

KAUST

CS 380 - GPU and GPGPU Programming Lecture 21: CUDA Memory, Pt. 2 GPU Reduction

Markus Hadwiger, KAUST

Reading Assignment #12 (until Nov 23)

Read (required):

• Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

- Programming Massively Parallel Processors book, 3rd edition Chapter 8 (Parallel Patterns: Prefix Sum)
- GPU Gems 3 book, Chapter 39: Parallel Prefix Sum (Scan) with CUDA https://developer.nvidia.com/gpugems/GPUGems3/gpugems3 ch39.html

Read (optional):

• Faster Parallel Reductions on Kepler, Justin Luitjens

https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

Quiz #3: Nov 18

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assigments
- Programming assignments (algorithms, methods)
- Solve short practical examples

Shared Memory

- Accessible by all threads in a block
- Fast compared to global memory
 - Low access latency
 - High bandwidth
- Common uses:
 - Software managed cache
 - Data layout conversion

Memory Banks

Fermi/Kepler/Maxwell and newer:

32 banks

default: 4B / bank

Kepler or newer: configurable to 8B / bank

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Case Study: Matrix Transpose

- Coalesced read
- Scattered write (stride N)
- ⇒ Process matrix tile, not single row/column, per block
- \Rightarrow Transpose matrix tile within block

Case Study: Matrix Transpose

- Coalesced read
- Scattered write (stride N)
- Transpose matrix tile within block
- ⇒ Need threads in a block to cooperate: use shared memory

Transpose with coalesced read/write

global transpose(float in[], float out[])

```
shared float tile[TILE][TILE];
```

```
int glob_in = xIndex + (yIndex)*N;
int glob out = xIndex + (yIndex)*N;
```

tile[threadIdx.y][threadIdx.x] = in[glob in];

```
syncthreads();
```

ł

}

out[glob out] = tile[threadIdx.x][threadIdx.y];

Fixed GMEM coalescing, but introduced SMEM bank conflicts

transpose << < grid, threads >>> (in, out);

Shared Memory: Avoiding Bank Conflicts

- Example: 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

Bank 0 Bank 1 ... Bank 31

GPU Reduction

Parallel reduction is a basic parallel programming primitive; see reduction operation on a stream, e.g., in Brook for GPUs

Example: Parallel Reduction

- Given an array of values, "reduce" them to a single value in parallel
- Examples
 - sum reduction: sum of all values in the array
 - Max reduction: maximum of all values in the array
- Typical parallel implementation:
 - Recursively halve # threads, add two values per thread
 - Takes log(n) steps for n elements, requires n/2 threads

Typical Parallel Programming Pattern

log(n) steps

Helpful fact for counting nodes of full binary trees: If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 – Control Flow

Hendrik Lensch and Robert Strzodka

Reduction – Version1

Parallel08 - Control Flow

Hendrik Lensch and Robert Strzodka

A Vector Reduction Example

- Assume an in-place reduction using shared memory
 - The original vector is in device global memory
 - The shared memory used to hold a partial sum vector
 - Each iteration brings the partial sum vector closer to the final sum
 - The final solution will be in element 0

Vector Reduction

Parallel08 - Control Flow

Hendrik Lensch and Robert Strzodka

A Simple Implementation

 Assume we have already loaded array into shared float partialSum[];

```
unsigned int t = threadIdx.x;
// loop log(n) times
for (unsigned int stride = 1;
    stride < blockDim.x; stride *= 2)
{
    // make sure the sum of the previous iteration
    // is available
    _____syncthreads();
    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t+stride];
}
```



```
_global__ void reduce0(int *g_idata, int *g_odata) {
    extern __shared__ int sdata[];
```

```
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];
__syncthreads();
```

```
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    ____syncthreads();
}
// write result for this block to global mem</pre>
```

```
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

}

Vector Reduction with Branch Divergence

Some Observations

- In each iterations, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition may cost extra cycles depending on the implementation of divergence

• No more than half of threads will be executing at any time

- All odd index threads are disabled right from the beginning!
- On average, less than ¼ of the threads will be activated for all warps over time.
- After the 5th iteration, entire warps in each block will be disabled, poor resource utilization but no divergence.
 - This can go on for a while, up to 4 more iterations (512/32=16= 2⁴), where each iteration only has one thread activated until all warps retire

Short comings of the implementation

 Assume we have already loaded array into shared float partialSum[];

Reduction – Version2

Parallel08 - Control Flow

Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns 1D

- Each thread loads 2 elements into shared mem:
 - 2-way-interleaved loads result in 2-way bank conflicts:

int tid = threadIdx.x; shared[2*tid] = global[2*tid]; shared[2*tid+1] = global[2*tid+1];

- This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffic.
 - Not in shared memory usage where there is no cache line effects but banking effects

A Better Array Access Pattern

 Each thread loads one element in every consecutive group of blockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] =
global[tid + blockDim.x];

A better implementation

Parallel08 - Control Flow

Hendrik Lensch and Robert Strzodka

A better implementation

Assume we have already loaded array into

```
_____shared____float partialSum[];
```

Parallel08 – Control Flow

A better implementation

- Only the last 5 iterations will have divergence
- Entire warps will be shut down as iterations progress
 - For a 512-thread block, 4 iterations to shut down all but one warp in each block
 - Better resource utilization, will likely retire warps and thus blocks faster
- Recall, no bank conflicts either

Parallel08 - Control Flow

Hendrik Lensch and Robert Strzodka

Implicit Synchronization in a Warp

For last 6 loops only one warp active (i.e. tid's 0..31) Shared reads & writes SIMD synchronous within a warp So skip syncthreads () and unroll last 5 iterations. This would not work properly unsigned int tid = threadIdx.x for (unsigned int d = n >> 1; dis warp size decreases; need syncthreads(); if (tid < d)synchthreads() between each shared[tid] += shared[' statement } syncthreads(); However, having if (tid <= 32) { // unroll last synchthreads() in if shared[tid] += shared[tid shared[tid] += shared[tid statement is problematic. shared[tid] += shared[tid shared[tid] += shared[tid + shared[tid] += shared[tid + 21;7shared[tid] += shared[tid + }

Look at CUDA SDK reduction example and slides!

NVIDIA

Optimizing Parallel Reduction in CUDA

Mark Harris NVIDIA Developer Technology

Common and important data parallel primitive

Easy to implement in CUDA Harder to get it right

Serves as a great optimization example

- We'll walk step by step through 7 different versions
- Demonstrates several important optimization strategies

```
template <unsigned int blockSize>
  global void reduce6(int *g idata, int *g odata, unsigned int n)
  extern shared int sdata[];
```

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
```

}


```
while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
syncthreads();
                                       out-of-bounds check missing, see SDK code
```

```
if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } syncthreads(); }
```

```
if (tid < 32) {be careful that shared variables are declared volatile! see SDK code
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

```
35
```

template <unsigned int blockSize>

```
device void warpReduce(volatile int *sdata, unsigned int tid) {
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
                                                            Final Optimized Kernel
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
template <unsigned int blockSize>
  global void reduce6(int *g idata, int *g odata, unsigned int n) {
  extern shared int sdata∏;
  unsigned int tid = threadldx.x;
  unsigned int i = blockldx.x*(blockSize*2) + tid;
  unsigned int gridSize = blockSize*2*gridDim.x;
  sdata[tid] = 0;
  while (i < n) { sdata[tid] += g idata[i] + g idata[i+blockSize]; i += gridSize; }
  syncthreads();
  if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } syncthreads(); }
  if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
  if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } syncthreads(); }
  if (tid < 32) warpReduce(sdata, tid);
  if (tid == 0) g odata[blockldx.x] = sdata[0];
}
```


Invoking Template Kernels

Don't we still need block size at compile time?

Nope, just a switch statement for 10 possible block sizes:

```
switch (threads)
    case 512:
      reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 256:
      reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 128:
      reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 64:
      reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 32:
      reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 16:
       reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 8:
       reduce5< 8><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 4:
       reduce5< 4><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 2:
      reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 1:
       reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
```

Parallel Reduction

Tree-based approach used within each thread block

- Need to be able to use multiple thread blocks
 - To process very large arrays
 - To keep all multiprocessors on the GPU busy
 - Each thread block reduces a portion of the array
- But how do we communicate partial results between thread blocks?

Problem: Global Synchronization

- If we could synchronize across all thread blocks, could easily reduce very large arrays, right?
 - Global sync after each block produces its result
 - Once all blocks reach sync, continue recursively
- But CUDA has no global synchronization. Why?
 - Expensive to build in hardware for GPUs with high processor count
 - Would force programmer to run fewer blocks (no more than # multiprocessors * # resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency
 - Solution: decompose into multiple kernels
 - Kernel launch serves as a global synchronization point
 - Kernel launch has negligible HW overhead, low SW overhead

Solution: Kernel Decomposition

Avoid global sync by decomposing computation into multiple kernel invocations

In the case of reductions, code for all levels is the same

Recursive kernel invocation

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

Kernel 7 on 32M elements: 73 GB/s!

- 1. On Volta and newer (Ampere, ...), reduction in shared memory must use warp synchronization!
- 2. Last optimization step for parallel reduction:
- Do not use shared memory for last 5 steps, but use

warp shuffle instructions

EXAMPLE: REDUCTION VIA SHARED MEMORY

___syncwarp

Re-converge threads and perform memory fence

```
v += shmem[tid+16]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; __syncwarp();
shmem[tid] = v;
```

38 🧆 NVIDIA.

Reduce

Code

// Threads want to reduce the value in x.

float x = ...;

// The x variable of laneid 0 contains the reduction.

Performance

- Launch 26 blocks of 1024 threads
- Run the reduction 4096 times

SMEM per Block fp32 (KB)

Thank you.

- Hendrik Lensch, Robert Strzodka
- NVIDIA