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Reading Assignment #11 (until Nov 16)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition

Chapter 5 (Performance Considerations) [was Chap. 6 in 2nd ed.]

Read (optional):

• Linear algebra operators for GPU implementation of numerical algorithms,
Krueger and Westermann, SIGGRAPH 2003

https://dl.acm.org/doi/10.1145/882262.882363

• A Survey of General-Purpose Computation on Graphics Hardware (2007)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j.1467-8659.2007.01012.x



Texture Minification
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Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Vienna University of Technology
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geometric series:
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Texture Anti-Aliasing: MIP Mapping

MIP Mapping Algorithm

D := ld(max(d1,d2))

T0 := value from texture D0= trunc (D)
Use bilinear interpolation

d1

d2

Bilinear interpolation Trilinear interpolation

X

"Mip Map level"



MIP-Map Level Computation
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• Use the partial derivatives of texture coordinates with respect to 
screen space coordinates

• This is the Jacobian matrix

• Area of parallelogram is the
absolute value of the Jacobian determinant (the Jacobian)

=



MIP-Map Level Computation (OpenGL)
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• OpenGL 4.6 core specification, pp. 251-264

Does not use area of parallelogram but greater hypotenuse [Heckbert, 1983]

• Approximation without square-roots

(3D tex coords!)



MIP-Map Level Interpolation
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• Level of detail value is fractional!

• Use fractional part to blend (lin.) between two adjacent mipmap levels
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Texture Anti-Aliasing: MIP Mapping

Trilinear interpolation:
T1 := value from texture D1 = D0+1 (bilin.interpolation)

Pixel value := (D1–D)·T0 + (D–D0)·T1

Linear interpolation between successive MIP Maps

Avoids "Mip banding" (but doubles texture lookups)

Vienna University of Technology
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Texture Anti-Aliasing: MIP Mapping 

Other example for bilinear vs. trilinear filtering

Vienna University of Technology
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Anti-Aliasing: Anisotropic Filtering

Anisotropic filtering
View-dependent filter kernel

Implementation: summed area table, "RIP Mapping", 
footprint assembly, elliptical weighted average (EWA)

Texture space

Vienna University of Technology



Anisotropic Filtering: Footprint Assembly
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Anti-Aliasing: Anisotropic Filtering

Example

Vienna University of Technology
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Texture Anti-aliasing

Basically, everything done in hardware
gluBuild2DMipmaps()generates MIPmaps

Set parameters in glTexParameter()
GL_TEXTURE_MAG_FILTER: GL_NEAREST, GL_LINEAR, …

GL_TEXTURE_MIN_FILTER: GL_LINEAR_MIPMAP_NEAREST

Anisotropic filtering is an extension:
GL_EXT_texture_filter_anisotropic

Number of samples can be varied (4x,8x,16x)
Vendor specific support and extensions



Stream Computing and GPGPU
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Types of Parallelism

Bit-Level Parallelism (70s and 80s)

• Doubling the word size 4, 8, 16, 32-bit (64-bit ~2003)

Instruction-Level Parallelism (mid 80s-90s)

• Instructions are split into stages  multi stage pipeline

• Superscalar execution, …

Data Parallelism

• Multiple processors execute the same instructions on different 
parts of the data

Task Parallelism

• Multiple processors execute instructions independently
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From GPU to GPGPU

1990s Fixed function graphics-pipeline used for more general 
computations in academia (e.g., rasterization, z-buffer)

2001 Shaders changed the API to access graphics cards

2004 Brook for GPUs changed the terminology

Since then: 

ATI’s Stream SDK (originally based on Brook)

NVIDIA’s CUDA (started by Brook developers)

OpenCL (platform independent)

GLSL Compute Shaders (platform independent)

Vulkan Compute Shaders (platform independent)
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Early GPGPU: Linear Algebra Operators

Vector and matrix representation and operators

• Early approach based on graphics primitives 

• Now CUDA makes this much easier

• Linear systems solvers

Krüger and Westermann (2003)
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Stream Programming Abstraction

Goal: SW programming model that matches data parallelism

Streams

• Collection of data records

• All data is expressed in streams

Kernels

• Inputs/outputs are streams

• Perform computation on streams
(each data record is processes independently)

• Can be chained together

Courtesy John Owens
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Why Streams?

• Exposing parallelism

• Data parallelism

• Task parallelism

for(i = 0; i<size; i++)
{

a[i] = 2*b[i];
}

for(each a, b)
{

a = 2*b;
}

for(i = 0; i<size; i++)
{

a[i] = a[i+1]*2;
}

for(each a)
{

???
}

• Multiple stream elements can be processed in parallel
• Multiple tasks can be processed in parallel
• Predictable memory access pattern
• Optimize for throughput of all elements, not latency of one
• Processing many elements at once allows latency hiding

































































Thank you.

• John Owens

• Ian Buck et al.

• AMD


