
CS 380 - GPU and GPGPU Programming
Lecture 19: GPU Texturing 6;

Stream Computing and GPGPU

Markus Hadwiger, KAUST



2

Reading Assignment #11 (until Nov 16)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition

Chapter 5 (Performance Considerations) [was Chap. 6 in 2nd ed.]

Read (optional):

• Linear algebra operators for GPU implementation of numerical algorithms,
Krueger and Westermann, SIGGRAPH 2003

https://dl.acm.org/doi/10.1145/882262.882363

• A Survey of General-Purpose Computation on Graphics Hardware (2007)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j.1467-8659.2007.01012.x



Texture Minification

Markus Hadwiger, KAUST 3



4

Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Vienna University of Technology



Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Vienna University of Technology

geometric series:



Eduard Gröller, Stefan Jeschke 6

Texture Anti-Aliasing: MIP Mapping

MIP Mapping Algorithm

D := ld(max(d1,d2))

T0 := value from texture D0= trunc (D)
Use bilinear interpolation

d1

d2

Bilinear interpolation Trilinear interpolation

X

"Mip Map level"



MIP-Map Level Computation

Markus Hadwiger, KAUST 7

• Use the partial derivatives of texture coordinates with respect to 
screen space coordinates

• This is the Jacobian matrix

• Area of parallelogram is the
absolute value of the Jacobian determinant (the Jacobian)

=



MIP-Map Level Computation (OpenGL)

Markus Hadwiger, KAUST 8

• OpenGL 4.6 core specification, pp. 251-264

Does not use area of parallelogram but greater hypotenuse [Heckbert, 1983]

• Approximation without square-roots

(3D tex coords!)



MIP-Map Level Interpolation

Markus Hadwiger, KAUST 9

• Level of detail value is fractional!

• Use fractional part to blend (lin.) between two adjacent mipmap levels



10

Texture Anti-Aliasing: MIP Mapping

Trilinear interpolation:
T1 := value from texture D1 = D0+1 (bilin.interpolation)

Pixel value := (D1–D)·T0 + (D–D0)·T1

Linear interpolation between successive MIP Maps

Avoids "Mip banding" (but doubles texture lookups)

Vienna University of Technology



11

Texture Anti-Aliasing: MIP Mapping 

Other example for bilinear vs. trilinear filtering

Vienna University of Technology



12

Anti-Aliasing: Anisotropic Filtering

Anisotropic filtering
View-dependent filter kernel

Implementation: summed area table, "RIP Mapping", 
footprint assembly, elliptical weighted average (EWA)

Texture space

Vienna University of Technology



Anisotropic Filtering: Footprint Assembly

Markus Hadwiger, KAUST 13



14

Anti-Aliasing: Anisotropic Filtering

Example

Vienna University of Technology



Vienna University of Technology 15

Texture Anti-aliasing

Basically, everything done in hardware
gluBuild2DMipmaps()generates MIPmaps

Set parameters in glTexParameter()
GL_TEXTURE_MAG_FILTER: GL_NEAREST, GL_LINEAR, …

GL_TEXTURE_MIN_FILTER: GL_LINEAR_MIPMAP_NEAREST

Anisotropic filtering is an extension:
GL_EXT_texture_filter_anisotropic

Number of samples can be varied (4x,8x,16x)
Vendor specific support and extensions



Stream Computing and GPGPU

Markus Hadwiger, KAUST 16



Types of Parallelism

Bit-Level Parallelism (70s and 80s)

• Doubling the word size 4, 8, 16, 32-bit (64-bit ~2003)

Instruction-Level Parallelism (mid 80s-90s)

• Instructions are split into stages  multi stage pipeline

• Superscalar execution, …

Data Parallelism

• Multiple processors execute the same instructions on different 
parts of the data

Task Parallelism

• Multiple processors execute instructions independently

Markus Hadwiger, KAUST 17



From GPU to GPGPU

1990s Fixed function graphics-pipeline used for more general 
computations in academia (e.g., rasterization, z-buffer)

2001 Shaders changed the API to access graphics cards

2004 Brook for GPUs changed the terminology

Since then: 

ATI’s Stream SDK (originally based on Brook)

NVIDIA’s CUDA (started by Brook developers)

OpenCL (platform independent)

GLSL Compute Shaders (platform independent)

Vulkan Compute Shaders (platform independent)

Markus Hadwiger, KAUST 18



19

Early GPGPU: Linear Algebra Operators

Vector and matrix representation and operators

• Early approach based on graphics primitives 

• Now CUDA makes this much easier

• Linear systems solvers

Krüger and Westermann (2003)



20

Stream Programming Abstraction

Goal: SW programming model that matches data parallelism

Streams

• Collection of data records

• All data is expressed in streams

Kernels

• Inputs/outputs are streams

• Perform computation on streams
(each data record is processes independently)

• Can be chained together

Courtesy John Owens



21

Why Streams?

• Exposing parallelism

• Data parallelism

• Task parallelism

for(i = 0; i<size; i++)
{

a[i] = 2*b[i];
}

for(each a, b)
{

a = 2*b;
}

for(i = 0; i<size; i++)
{

a[i] = a[i+1]*2;
}

for(each a)
{

???
}

• Multiple stream elements can be processed in parallel
• Multiple tasks can be processed in parallel
• Predictable memory access pattern
• Optimize for throughput of all elements, not latency of one
• Processing many elements at once allows latency hiding

































































Thank you.

• John Owens

• Ian Buck et al.

• AMD


