

CS 380 - GPU and GPGPU Programming Lecture 16: GPU Texturing 3

Markus Hadwiger, KAUST

Reading Assignment #9 (until Nov 2)

Read (required):

• MIP-Map Level Selection for Texture Mapping

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous_coordinates

• Don't forget:

Interpolation for Polygon Texture Mapping and Shading, Paul Heckbert and Henry Moreton

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

Read (optional):

Vulkan Tutorial

```
https://vulkan-tutorial.com
```


Interpolation Type + Purpose #1: Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Homogeneous Coordinates (1)

Projective geometry

• (Real) projective spaces RPⁿ:

Real projective line RP¹, real projective plane RP², ...

• A point in RPⁿ is a line through the origin (i.e., all the scalar multiples of the same vector) in an (n+1)-dimensional (real) vector space

• Coordinates differing only by a non-zero factor λ map to the same point

 $(\lambda x, \lambda y, \lambda)$ dividing out the λ gives (x, y, 1), corresponding to (x, y) in R²

• Coordinates with last component = 0 map to "points at infinity"

 $(\lambda x, \lambda y, 0)$ division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x, y, 0)

• Coordinates with last component = 0 m (λx , λy , 0) division by I

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$ec{y} = Aec{x} + ec{b}.$$

• With homogeneous coordinates:

$$egin{bmatrix} ec{y} \ 1 \end{bmatrix} = egin{bmatrix} A & ec{b} \ 0 & \dots & 0 \ \end{vmatrix} egin{bmatrix} ec{x} \ 1 \end{bmatrix} egin{bmatrix} ec{x} \ 1 \end{bmatrix}$$

- Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the (n+1)-dimensional space for translation

Homogeneous Coordinates (3)

Examples of usage

Texture Mapping

2D (3D) Texture Space **Texture Transformation** 2D Object Parameters Parameterization 3D Object Space **Model Transformation** 3D World Space **Viewing Transformation 3D Camera Space** Projection 2D Image Space

Kurt Akeley, Pat Hanrahan

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

Texture Mapping Polygons

Forward transformation: linear projective map

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \\ r \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Kurt Akeley, Pat Hanrahan

Incorrect attribute interpolation

Kurt Akeley, Pat Hanrahan

Linear interpolation

Compute intermediate attribute value

- Along a line: $A = aA_1 + bA_2$, a+b=1
- On a plane: $A = aA_1 + bA_2 + cA_3$, a+b+c=1

Only projected values interpolate linearly in screen space (straight lines project to straight lines)

- x and y are projected (divided by w)
- Attribute values are not naturally projected

Choice for attribute interpolation in screen space

- Interpolate unprojected values
 - Cheap and easy to do, but gives wrong values
 - Sometimes OK for color, but
 - Never acceptable for texture coordinates
- Do it right

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

Perspective Texture Mapping $\frac{ax_1 + bx_2}{aw_1 + bw_2} \neq a\frac{x_1}{w_1} + b\frac{x_2}{w_2}$ linear interpolation in screen space linear interpolation in object space

 $a = b_{13} = 0.5$

Vienna University of Technology

Early Perspective Texture Mapping in Games

Ultima Underworld (Looking Glass, 1992)

Markus Hadwiger, KAUST

Early Perspective Texture Mapping in Games

DOOM (id Software, 1993)

Early Perspective Texture Mapping in Games

Quake (id Software, 1996)

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

Linearly interpolate A₁/w₁ and A₂/w₂

Also interpolate 1/w₁ and 1/w₂

These also interpolate linearly in screen space
Divide interpolants at each sample point to recover A

- (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

Barycentric triangle parameterization:

 $aA_1/w_1 + bA_2/w_2 + cA_3/w_3$

A =

 $a/w_1 + b/w_2 + c/w_3$

a + b + c = 1

Perspective Texture Mapping

Solution: interpolate (s/w, t/w, 1/w)
 (s/w) / (1/w) = s etc. at every fragment

Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

- (1) Associate a record containing the *n* parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n, s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading. Heckbert and Moreton

Thank you.