
CS 380 - GPU and GPGPU Programming
Lecture 14: GPU Compute APIs 3,

GPU Texturing 1

Markus Hadwiger, KAUST

2

Reading Assignment #8 (until Oct 26)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition,
Chapter 7 (Parallel Patterns: Convolution)

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

3

Quiz #2: Oct 28

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assigments

• Programming assignments (algorithms, methods)

• Solve short practical examples

4

Semester Project (proposal until next week!)

• Choosing your own topic encouraged!
(we can also suggest some topics)

• Pick something that you think is really cool!

• Can be completely graphics or completely computation, or both combined

• Can be built on CS380 frameworks, NVIDIA OpenGL SDK, or CUDA SDK

• Submit short (1-2 pages) project proposal sometime next week

• Submit semester project and report (deadline: Dec 10)

• Present semester project (we will schedule event in final exams week)

5

Semester Project Ideas (1)

Some ideas for topics

• Procedural shading with noise + marble etc. (GPU Gems 2, chapter 26)

• Procedural shading with noise + bump mapping (GPU Gems 2, chapter 26)

• Subdivision surfaces (GPU Gems 2, chapter 7)

• Ambient occlusion, screen space ambient occlusion

• Shadow mapping, hard shadows, soft shadows

• Deferred shading

• Particle system rendering + CUDA particle sort

• Advanced image filters: fast bilateral filtering, Gaussian kD trees

• Advanced image de-convolution (e.g., convex L1 optimization)

• PDE solvers (e.g., anisotropic diffusion filtering, 2D level set segmentation,
2D fluid flow)

6

Semester Project Ideas (2)

Some ideas for topics

• Distance field computation (GPU Gems 3, chapter 34)

• Livewire (“intelligent scissors“) segmentation in CUDA

• Linear systems solvers, matrix factorization (Cholesky, ...); with/without CUBLAS

• CUDA + matlab

• Fractals (Sierpinski, Koch, ...)

• Image compression

• Bilateral grid filtering for multichannel images

• Discrete wavelet transforms

• Fast histogram computations

• Terrain rendering from height map images; clipmaps or adaptive tesselation

CUDA Multi-Threading

• CUDA model groups threads
into blocks; blocks into grid

• Execution on actual
hardware:

– Block assigned to SM
(up to 8, 16, or 32
blocks per SM; depending
on compute capability)

– 32 threads grouped into
warp

7

Plus newer sync functions, e.g., from compute capability 2.x:
__syncthreads_count(), __syncthreads_and/or(),
__threadfence_block(), __threadfence_system(), …

Now: Must use versions with _sync suffix, because of
Independent Thread Scheduling (compute capability 7.x and newer)!

Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix
back to host

20

Example: Matrix Multiplication (2)

21

Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements

– Each thread fetches one
element of block

– Perform row * column
dot products in parallel

22

Example: Matrix Multiplication (4)

23

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

PTX Virtual Machine Model

Markus Hadwiger, KAUST 24

PTX Virtual Machine Model

Markus Hadwiger, KAUST 25

PTX Virtual Machine Model

Markus Hadwiger, KAUST 26

this is a complete

list of all PTX 7.1

instruction keywords

however, note that

ultimately operand types,

e.g., int vs. float,

will result in different

machine (SASS)

instructions.

PTX Code and Inline Assembly

Markus Hadwiger, KAUST 27

PTX (Parallel Thread Execution) Code

Markus Hadwiger, KAUST 28

SASS (Streaming Assembler) Code

Markus Hadwiger, KAUST 29

NVCC

Markus Hadwiger, KAUST 30

CUDA
compilation
trajectory

31

GPU Texturing

Rage / id Tech 5 (id Software)

Vienna University of Technology 32

Remember: Basic Shading

Flat shading

compute light interaction per polygon

the whole polygon has the same color

Gouraud shading

compute light interaction per vertex

interpolate the colors

Phong shading

interpolate normals per pixel

Remember: difference between

Phong Lighting Model

Phong Shading

Vienna University of Technology 33

Traditional OpenGL Lighting

Phong lighting model at each vertex (glLight, …)
Local model only (no shadows, radiosity, …)
ambient + diffuse + specular (glMaterial!)

Fixed function: Gouraud shading
Note: need to interpolate specular separately!

Phong shading: evaluate Phong lighting model in
fragment shader (per-fragment evaluation!)

34

Why Texturing?

Idea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

Vienna University of Technology 35

OpenGL Texture Mapping

Basis for most real-time rendering effects

Look and feel of a surface

Definition:

A regularly sampled function that is mapped onto
every fragment of a surface

Traditionally an image, but…

Can hold arbitrary information

Textures become general data structures

Sampled and interpreted by fragment programs

Can render into textures  important!

Vienna University of Technology 36

Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

Eduard Gröller, Stefan Jeschke 37

Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels

38

Perspective Projection

2D Texture Mapping

Texture

R G B A
For each fragment:

interpolate the
texture coordinates

(barycentric)
Or:

Use arbitrary, computed coordinates

Texture-Lookup:
interpolate the
texture data
(bi-linear)

Or:
Nearest-neighbor for “array lookup”

3D Texture Mapping

R G B A

R

G
B

For each fragment:
interpolate the

texture coordinates
(barycentric)

Or:
Use arbitrary, computed coordinates

Texture-Lookup:
interpolate the
texture data
(tri-linear)

Or:
Nearest-neighbor for “array lookup”

Thank you.

