CS 380 - GPU and GPGPU Programming
Lecture 12: GPU Compute APIs 1

kﬁnarku . : -

Reading Assignment #7 (until Oct 19)

Read (required):
*Read https://en.wikipedia.org/wiki/Instruction pipelining

« CUDA NVCC doc (CUDA SDK: CUDA Compiler Driver NVCC.pdf)
Read Chapters 1 — 3; Chapter 5; get an overview of the rest

« PTX Instruction Set Architecture 7.1 in CUDA SDK (ptx _isa 7.1.pdf)
Read Chapters 1 — 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

* Look at CUDA SASS in CUDA SDK: CUDA Binary Utilities.pdf, Chapter 4

Read (optional):
* Inline PTX Assembly in CUDA (CUDA SDK: Inline PTX Assembly.pdf)
 Dissecting GPU Architecture through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826
Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

NVIDIA Volta Architecture
2017/2018

L1 Instruction Cache

‘ L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
N V I D I A VO I ta S M Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32

MUItIprocessor SM FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR
* 64 FP32 + INT32 Cores FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE
» 32 FP64 cores

» 8 tensor cores

FP64 INT INT FP32 FP32 FP&4 INT INT [FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
SFU ST ST ST ST ST ST ST ST SFU

(FP16/FP32 mixed-precision) |

L0 Instruction Cache | || | L0 Instruction Cache
Warp Scheduler (32 threadiclk) Warp Scheduler (32 thread/clk)

4 pa rtltl O n S I n S I d e S M Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
* 16 FP32 + INT32 cores each R e
FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32

8 FP64 cores eaCh FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

8 LD/ST unItS eaCh FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT [FP32 FP32 CORE CORE

2 tensor cores each il T

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

Each has: warp scheduler,
dispatch unit, register file EEEEEEE] - | EEEEEEEE

Tex Tex

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate

D =

FP16 or FP32

FP16 or FP32

From this, build larger sizes, higher dimensionalities, ...

[+ Tensor cores on later architectures add more data types/precisions!]

Markus Hadwiger, KAUST 5

NVIDIA Ampere Architecture
2020

GA100, GA102, GA104, ...
(A100, RTX 3070, RTX 3080, RTX 3090, ...)

NVIDIA GA100 SM

Multiprocessor: SM
64 FP32 + 64 INT32 cores

32 FP64 cores

4 31 gen tensor cores

1 2nd gen RT (ray tracing) core

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

T TnEHUCHon Cashe
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 Fpes
FP32 FP32 FPe4
FP3z FP32 FPe4
FP32 FPa2 Fpe4
TENSOR CORE
FP32 FP32 Fpes
FP32 FPa2 Fpe4
FP32 FP32 FPes
FP32 FP32 Fpes

Lo/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

Lol
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FPe4
FP32 FP32 FPe4
FP32 FP32 FP64
FP32 FP32 FPe4

TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FPe4

FP32 FP32 FP64

FP32 FP32 FPe4
LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

4 partitions inside SM

INT32INT32 FP32 FP32 FPea INT32INT32 FP32 FP32 FP64
16 FP32 + 16 INT32
+ cores INT32 INT32 FP32 FP32 FPea INT32 INT32 FP32 FP32 FPs4
INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FPe4
° 8 F P64 CO reS INT32INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FPe4
TENSOR CORE TENSOR CORE
INT32INT32 FP32 FP32 FPea INT3Z INT32 FP32 FP32 FPe4
° 8 L D / ST t h INT32INT3Z FP32 FP32 FPea4 INT32INT32 FP32 FP32 FP64
units eacC
INT32 INT32 FP32 FP32 FPsa INT32 INT32 FP32 FP32 FP64
° 1 3rd t h INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
gen enSOr CO re eaC LD/ LD/ Lo/ LD/ LD/ LD/ Lo/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
sT ST ST ST ST ST ST ST ST ST ST sT ST ST ST
[

Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM
» 128 (64+64) FP32 + 64 INT32 cores
» 2 (') FP64 cores
« 4 31 gen tensor cores

« 1 2"d gen RT (ray tracing) core

4 partitions inside SM
* 16+16 FP32 + 16 INT32 cores
* 4 LD/ST units each
« 1 31 gen tensor core each

« Each has: warp scheduler,
dispatch unit, 16K register file

L0 i-Cache + Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/IST LDIST LD/IST LDIST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LDIST SFU

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LDIST LD/ST LD/ST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/IST LD/ST LD/IST LD/ST

128KB L1 Data Cache / Shared Memory

Tex

| RT CORE

] ,‘Zﬁd]Gclaneratioﬁf;’"’ /'

Tensor Cores: Many Mixed Precision Options

New in Ampere: TF32, BF16, FP64 FP32 FP32
matrix matrix
« Range Precision
o exponent mantissa h
Format to TF32
FP32 lmmmmmmmmm e
TF32 Emﬂ]?mm?gm FP32 accumulate
z m

FP16 E—{IIIDIIIIIIIIT}s

e8 m7
BF16 EIIIIIID
Matrix

plus FP64 (new in Ampere; GA100 only)
plus INT4/INT8/binary data types (already introduced in Turing)

Markus Hadwiger, KAUST 9

Tensor Cores: Sparsity Support

Sparse MMA instructions Sparse T TTTTIT] Input
Tensor Core ¥ i I activations
2:4 structured sparsity select 7 Gk -

dot-product

Tim . 4

(CTTTT o (f

) |

Fine-grained

Compress
structured
pruning
Dense (2:4 non-zero) c: — Non- Non- Output
trained . " Zero zero activations
weights Fine-tuning

data indi
weights ata indices

Markus Hadwiger, KAUST 10

CUDA
Compute Capabilities

Markus Hadwiger, KAUST 11

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.0
Maximum x- or y-dimension of a grid 65535
ompute Capab. — 2.0 |Ez=
Maximum number of threads per 512 1024
block
Maximum x- or y-dimension of a 512 1024
block
Maximum z-dimension of a block 64
» 1024 threads / block
Warp size 32
Maximum number of resident blocks 8
Maximum number of resident warps 24 32 48
» 32K registers / SM et et iproocssy
Maximum number of resident threads 768 1024 1536
. . . per multiprocessor
* New synchronization functions imoe o320t regsms per e e =y
multiprocessor
C teC bili i 4
ompute Capability Maximum amount of shared memory 16 KB 48 KB
per multiprocessor
Feature Support 1.0 1.1 1.2 1.3 2.0
(Unlisted features are supported Number of shared memory banks 16 32
il compiieropailine) Amount of local memory per thread 16 KB 512 KB
Integer atomic functions operating on C
32-bi_t words in global memory No yes Constant memory size &4 KB
(Section B:10) Cache working set per multiprocessor 6
Integer atomic functions operating on for constant memory
64-bit words in global memory
(Section B.10) Cache working set per multiprocessor -
g Device dependent, between 6 KB and 8 KB
Integer atomic functions operating on No Yes for texture memory L
32-bit words in shared memory F F
2 Maximum width for a 1D texture
S B.10
Gertion BI04 - - reference bound to a CUDA array i SR
Warp vote functions (Section B.11) F F
Double-precision floating-point N Maximum width for a 1D texture 24
DUt Bars o reference bound to linear memory
Floating-point atomic addition Maximum width and height for a 2D 65536
operating on 32-bit words in global texture reference bound to linear 65536 x 32768 =
and shared memory (Section B.10) memory or a CUDA array 65536
ballot() (Section B.11
_: Ot;(sction) S—— No Yes Maximum width, height, and depth 4096 x
—Miteqdisrize’ aystal) (Secian B:5) for a 3D texture reference bound to 2048 x 2048 x 2048 4096 %
__syncthreads_count(), linear memory or a CUDA array 4096

__syncthreads_and(),
_ syncthreads_or() (Section B.6)

Maximum number of instructions per
kernel

2 million

Compute Capabilities 2.0 — 3.5 (Fermi — Kepler)

A

FERMI | FERMI | KEPLER | KEPLER

GF100 GF104 GK104 GK110
Compute Capability 2.0 8 | 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2716-1 2716-1 2A32-1 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

Compute Capability of Fermi and Kepler GPUs

Compute Capab. 5.x (Maxwell, Part 1)

Maxwell
« GM107: 5.0
« GM204: 5.2

Compute Capability

Technical Specifications

3.5 3.7

5.0

5.2

Maximum dimensionality of grid of thread
blocks

Maximum x-dimension of a grid of thread
blocks

65535

Maximum y- or z-dimension of a grid of thread
blocks

Maximum dimensionality of thread block

Maximum x- or y-dimension of a block

Maximum z-dimension of a block

Maximum number of threads per block

1024

Warp size

32

Maximum number of resident blocks per
multiprocessor

16

a2

Maximum number of resident warps per
multiprocessor

48

64

Maximum number of resident threads per
multiprocessor

1536

2048

Compute Capab. 5.x (Maxwell, Part 2)

Maxwell
« GM107: 5.0
« GM204: 5.2

Compute Capability

Technical Specifications

2.X

3.5 3.7

5.0 5.2

Number of 32-bit registers per multiprocessor

32K

64 K 128 K

64 K

Maximum number of 32-bit registers per
thread block

32K

64 K

Maximum number of 32-bit registers per
thread

63

285

Maximum amount of shared memory per
multiprocessor

48 KB 112 KB

64 KB 96 KB

Maximum amount of shared memory per
thread block

48 KB

Number of shared memory banks

32

Amount of local memory per thread

512 KB

Constant memory size

64 KB

Cache working set per multiprocessor for
constant memory

8 KB

10 KB

Cache working set per multiprocessor for
texture memory

12 KB

Between 12 KB and

48 KB

Compute Capabilities 3.5 — 7.0 (Kepler — Volta)

axwell Pascal

Compute Capability

Threads / Warp
Max Warps / SM
Max Threads / SM
Max Thread Blocks / SM
Max 32-bit Registers / SM
Max Registers / Block
Max Registers / Thread
Max Thread Block Size
FP32 Cores / SM

of Registers to FP32 Cores
Ratio

Shared Memory Size / SM

32

64

2048

16

65536

65536

255

1024

192

341

16 KB/32 KB/48
KB

32

64

2048

32

65536

32768

255

1024

128

212

96 KB

32

64

2048

32

65536

65536

235

1024

64

1024

64 KB

32
64
2048
32
65536
65536
255
1024
64

1024

Configurable up to
96 KB

Compute Capabilities — 8.0 (Ampere)

GPU Features
GPU Codename

GPU Architecture
Compute Capability
Threads/Warp

Max Warps /SM

Max Threads / SM

Max Thread Blocks /SM
Max 32-bit Registers / SM
Max Registers / Block
Max Registers / Thread
Max Thread Block Size
FP32 Cores/SM

Ratio of SM Registers to FP32
Cores

Shared Memory Size / SM

Markus Hadwiger, KAUST

NVIDIA Tesla P100
GP100

NVIDIA Pascal
6.0

32

64
2048
32
65536
65536
255
1024
64
1024

64 KB

NVIDIA Tesla V100
GV100

NVIDIA Volta
7.0

32

64
2048
32
65536
65536
255
1024
64
1024

Configurableup to
96 KB

NVIDIA A100
GA100

NVIDIA Ampere
8.0

32

64
2048
32
65536
65536
255
1024
64
1024

Configurableupto
164 KB

17

GPU Compute APIs

Markus Hadwiger, KAUST 18

NVIDIA CUDA

« “Compute Unified Device Architecture”

* Extensions to C(++) programming language
« host , global ,and__device _ functions

* Heavily multi-threaded

« Synchronize threads with __syncthreads(), ...

» Atomic functions
(before compute capability 2.0 only integer, from 2.0 on also float)

» Compile .cu files with NVCC

» Uses general C compiler (Visual C, gcg, ...)
* Link with CUDA run-time (cudart.1lib) and cuda core (cuda.lib)

19

CUDA Multi-Threading

20

» CUDA model groups threads
into blocks; blocks into grid

« Execution on actual
hardware:
— Block assigned to SM
(up to 8, 16, or 32
blocks per SM; depending
on compute capability)

— 32 threads grouped into
warp

Grid

Block (0, 0) | Block (1,0) || Block (2, 0)

Block (0, 1) Block (1,1) ™Block (2, 1)

Block (1, 1)

Threads in Block, Blocks in Grid

* |[dentify work of thread via

— threadIdx
— blockIdx
Thread Block 0 Thread Block 1 Thread Block N - 1
threadIdx ol 1| 2] 3| 4| 5| 6] 7 0| 1| 21 3| 4] 5| 6] 7 o 1] 2| 3| 4| 5] 6| 7

float x = float x =
input[threadIdx]; input[threadIdx];

float x =
input[threadIdx];

float y = func(x); float y = func(x);
output[threadIdx] = y; output[threadIdx] = y;

float y = func(x);
output|[threadIdx] = y;

blockIdx == blockIdx == 1 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

21

CUDA Memory Model and Usage

e cudaMalloc (), cudaFree ()

 cudaMallocArray () ,
cudaMalloc2DArray (),
cudaMalloc3DArray ()

Grid

Block (0, 0) Block (1, 0)
* cudaMemcpy ()

 cudaMemcpyArray () F ’ F F

® HOSt > hOSt Thread (0, 0) Thread (1, 0) | Thread (0, 0) Thread (1, 0)

Host <« device

Device < device
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Host

S

» Asynchronous transfers
possible (DMA)

22

CUDA Software Development

CUDA Optimized Libraries: Integrated CPU + GPU
math.h, FFT, BLAS, ... C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing (PTX) CPU Host Code

CUDA

Driver Profiler Standard C Compiler

CPU

© 2008 NVIDIA Corporation. ‘@2 nviDiAa

Compiling CUDA Code

C/C++ CUDA
Application

CPU Code

PTX Code Virtual

PTX to Target PhySICG|

Compiler

G80 L/J GPU

Target code

SANVIDIA

CUDA Kernels and Threads

® Parallel portions of an application are executed on

“

-

the device as kernels

4
{ ® One kernel is executed at a time
- ® Many threads execute each kernel

® Differences between CUDA and CPU threads

® CUDA threads are extremely lightweight
® Very little creation overhead
® Instant switching

® CUDA uses 1000s of threads to achieve efficiency
® Multi-core CPUs can use only a few

Definitions
Device = GPU
Host = CPU
Kernel = function that runs on the device

<SANVIDIA

Arrays of Parallel Threads

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory
addresses and make control decisions

threadID

float x = input[threadID];
float y = func(x);
output[threadID] = y;

<SANVIDIA

Thread Batching

® Kernel launches a grid of thread blocks
® Threads within a block cooperate via shared memory
® Threads within a block can synchronize
® Threads in different blocks cannot cooperate

® Allows programs to transparently scale to
different GPUs

Grid

Thread Block 0 Thread Block 1 Thread Block N-1

QR QA P (e

Shared Memory Shared Memory Shared Memory

<SANVIDIA

Transparent Scalability

® Hardware is free to schedule thread blocks on any
processor
® A kernel scales across parallel multiprocessors

Kernel grid

Device
Block 0 Block 1 l
Block 2 Block 3

Block 4

Device

Block 5
Block 0

Block 1 Block 2 Block 3

Block 0 Block 1

Block 6 Block 7

Block 4 Block 5 Block 6 Block 7

Block 2

Block 3

Block 4 Block 5

Block 6 Block 7

© 2008 NVIDIA Corporation. @2 nvibiAaA

Execution Model

Software Hardware

|
Thread
Processor

Threads are executed by thread
processors
Thread

Thread blocks are executed on
multiprocessors

Several concurrent thread blocks can
Thread reside on one multiprocessor - limited
Block by multiprocessor resources (shared
memory and register file)

A Kernel is launched as a grid of

device at one time
© 2008 NVIDIA Corporation. @2 nvibiAaA

Device

CUDA Programming Model

e Kernel

— GPU program that runs on a thread grid

e Thread hierarchy
— Grid : a set of blocks
— Block : a set of warps
— Warp : a SIMD group of 32 threads
— Grid size * block size = total # of threads

Kernel

2

Grid

Block 1

Block 2

warp

warp

warp warp

Block n

warp

warp

CUDA Memory Structure

e Memory hierarchy

—PC memory : off-card
—GPU global : off-chip / on-card
—GPU shared/register/cache : on-chip

e The host can read/write global memory
e Each thread communicates using shared memory

Graphics card

GPU Core

PC Memory GPU GlObal GPU Shared
iy Memory m Memory
(DRAM) (DRAM) (On-Chip)

|ALUs

Kernel Memory Access
® Per-thread

«—> EEEE On-chip
Thread

<« | ez NEgei Off-chip, uncached

e
<- ® Per-block

Block Y Shared . IC:Jn-chip, small
— .
i Memory ast

® Per-device

El . — i e

* Persistent across
kernel launches
e Kernel 1/O

AnNvibDiA

Memory Architecture <X
NVIDIA.

Memory Location |[Cached |Access |Scope Lifetime

Register | On-chip N/A R/W One thread Thread
Local Off-chip No R/W One thread Thread

Shared On-chip R/W All threads in a block | Block

Global Off-chip All threads + host Application

Constant | Off-chip All threads + host Application

Texture Off-chip All threads + host Application

® NVIDIA Corporation 2009

(Memory) State Spaces

PTX ISA 7.1 (Chapter 5)

Name Addressable Initializable Access Sharing
.reg No No R/W per-thread
.sreg No | No RO per-CTA
.const Yes Yes' RO per-grid
.global Yes Yes' R/W Context
.local Yes No R/W per-thread
.paramn (as input to Yes? No RO per-grid
kernel

.param [used in ' Restricted 'No | R/W per-thread
functions]

.shared Yes No R/W per-CTA
.tex No* Yes, via driver RO Context
Notes:

"Variables in .const and .global state spaces are initialized to zero by default.
2 Accessible only via the 1d.param instruction. Address may be taken via mov Iinstruction.

* Accessible via ld.param and st.param instructions. Device function input and return parameters
may have their address taken via mov; the parameter is then located on the stack frame and its
addressis in the .local state space.

* Accessible only via the tex instruction.

Managing Memory

® CPU and GPU have separate memory spaces

® Host (CPU) code manages device (GPU) memory:
® Allocate / free
® Copy data to and from device
® Applies to global device memory (DRAM)

Device

ultiprocessor

Local Multiprocessor
‘ Memory

Multiprocessor

Chipset “| Global |/ Registers
Memory | »

Shared Memory

<SANVIDIA

Thank you.

