

CS 380 - GPU and GPGPU Programming Lecture 1: Introduction

Markus Hadwiger, KAUST

Lecture Overview

Goals

- Learn GPU architecture and programming; both for graphics and for compute (GPGPU)
- Shading languages (GLSL, Cg, HLSL), compute APIs (CUDA, OpenCL, DirectCompute)

Time and location

• Monday + Wednesday, 10:15 – 11:45, online (Zoom)

Webpage:

http://faculty.kaust.edu.sa/sites/markushadwiger/Pages/CS380.aspx

Contact

- Markus Hadwiger: markus.hadwiger@kaust.edu.sa
- Peter Rautek (main contact assignments): peter.rautek@kaust.edu.sa
- Amani Ageeli (programming questions): amani.ageeli@kaust.edu.sa

Prerequisites

• C/C++ programming (!), basic computer graphics, basic linear algebra

Lecture Structure

Lectures

- Part 1: GPU Basics and Architecture (both: graphics, compute)
- Part 2: GPUs for Graphics
- Part 3: GPUs for Compute

Some lectures will be on research papers (both seminal and current)

Assignments

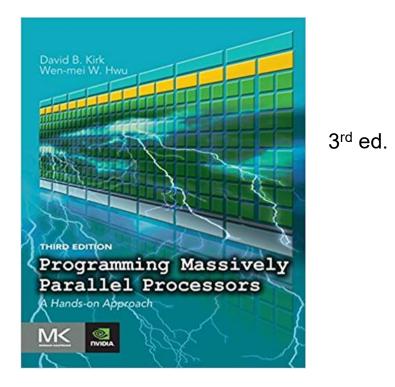
- 5 programming assignments
- Weekly reading assignments (required; also some optional)

Quizzes

- 4 quizzes, throughout the semester, 30 min each; announced at least a week in advance
- From lectures and (required) reading assignments

Semester project + final presentations, but no mid-term/final exam!

Grading: 40% programming assignments; 30% semester project; 30% quizzes


Resources (1)

Textbooks

- GPUs for Graphics: OpenGL 4.0 Shading Language Cookbook, 2nd ed.
- GPU Computing / GPGPU: Programming Massively Parallel Processors, 3rd ed.

Resources (2)

Long list of links on course webpage:

http://faculty.kaust.edu.sa/sites/markushadwiger/Pages/CS380.aspx

- www.opengl.org
- www.gpgpu.org
- www.nvidia.com/cuda/
- www.khronos.org/registry/cl/
- ...

Very nice resources for examples:

- GPU Gems books 1-3 (available online)
- GPU Computing Gems, Vol. 1 + 2 (Emerald/Jade edition)
- Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs

Resources (3)

Learn OpenGL

Nice recent introduction to OpenGL

Webpage:

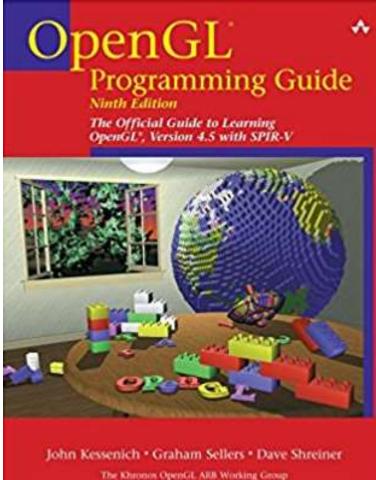
https://learnopengl.com/

Free book as pdf:

https://learnopengl.com/book/book_pdf.pdf

Learn OpenGL - Graphics Programming Learn modern OpenGL graphics programming in a step-by-step fashion. Joey de Vries

Resources (4)

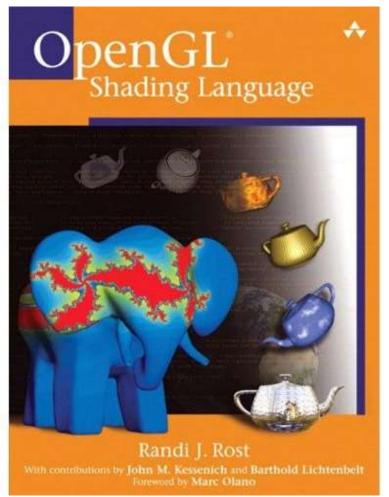

OpenGL Programming Guide (red book)

http://www.opengl-redbook.com/

Computer graphics and OpenGL

Current edition: 9th OpenGL 4.5 contains extended chapters on GLSL

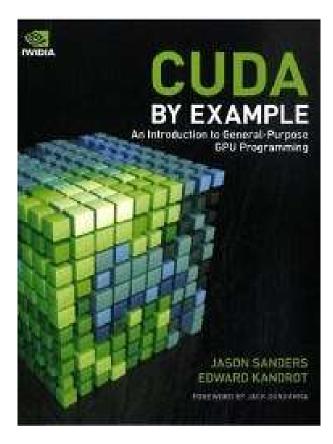
Available in the KAUST library also electronically


Resources (5)

OpenGL Shading Language (orange book)

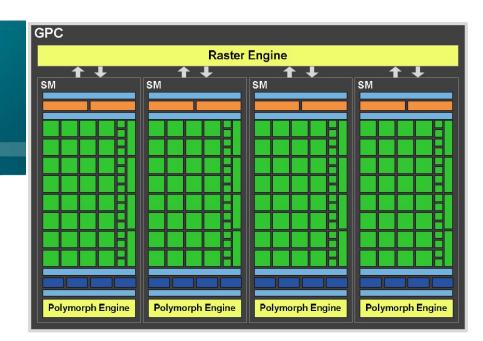
Current edition: 3rd OpenGL 3.1, GLSL 1.4 no geometry shaders

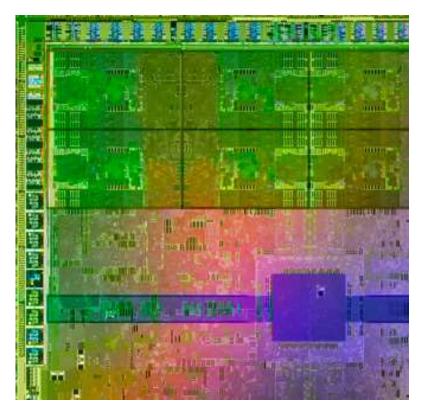
Available in the KAUST library also electronically



Resources (6)

CUDA by Example: An Introduction to General-Purpose GPU Programming, Jason Sanders, Edward Kandrot


See reference section of KAUST library



Syllabus (1)

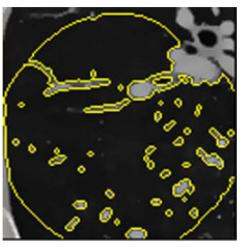
GPU Basics and Architecture (~August, September)

- Introduction
- GPU architecture
- How shader cores work
- GPU shading and GPU compute APIs
 - General concepts and overview
 - Learn syntax details on your own !
 - GLSL book
 - CUDA book
 - Online resources, ...

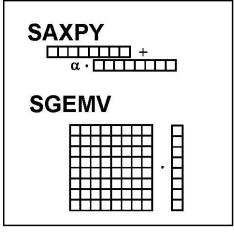
Syllabus (2)

GPUs for Graphics (~October)

- GPU texturing, filtering
- GPU (texture) memory management
- GPU frame buffers
- Virtual texturing



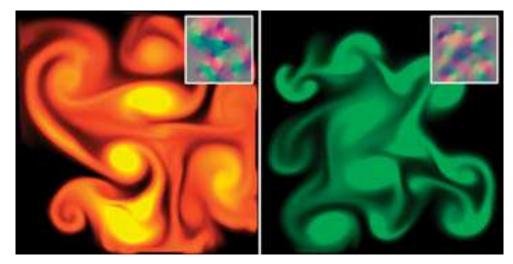
Syllabus (3)


GPU Computing (~November)

- GPGPU, important parallel programming concepts
- CUDA memory access
- Reduction, scan
- Linear algebra on GPUs
- Deep learning on GPUs
- Combining graphics and compute
 - Display the results of computations
 - Interactive systems (fluid flow, ...)

Semester project presentations

segmentation

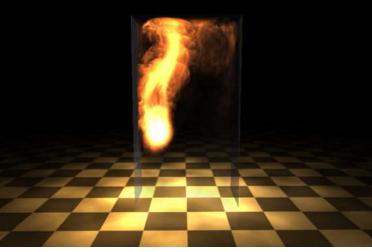


linear algebra

Example: Fluid Simulation and Rendering

- Compute advection of fluid
 - (Incompressible) Navier-Stokes solvers
 - Lattice Boltzmann Method (LBM)
- Discretized domain; stored in 2D/3D textures
 - Velocity, pressure
 - Dye, smoke density, vorticity, …
- Updates in multi-passes
- Render current frame

Courtesy Mark Harris


Example: Volumetric Special Effects

- NVIDIA Demos
 - Smoke, water
 - Collision detection with voxelized solid (Gargoyle)
- Ray-casting
 - Smoke: direct volume rendering
 - Water: level set / isosurface

Courtesy Keenan Crane 14

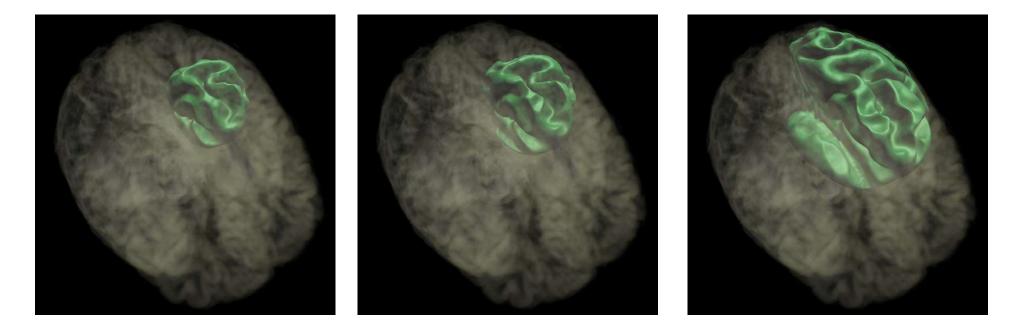
Example: Ray Tracing

Ray tracing in CUDA kernels, or ray tracing cores

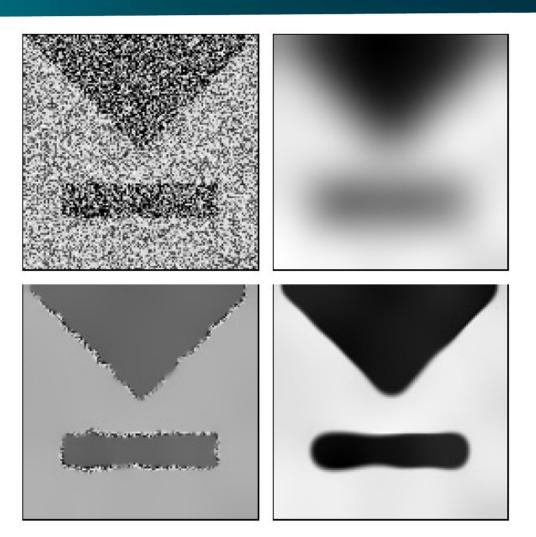
- Microsoft DXR (DX12 API), Vulkan, NVIDIA OptiX / RTX
- NVIDIA Turing: "World's First Ray Tracing GPU" Quadro RTX, Geforce RTX

Epic Games Unreal Engine 4 with MS DXR

Example: Particle Simulation and Rendering


NVIDIA Particle Demo

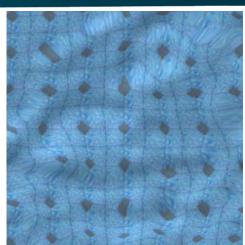
Example: Level-Set Computations

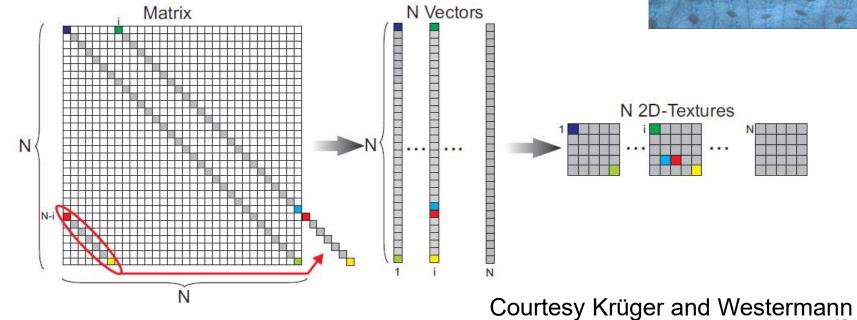

- Implicit surface represented by distance field
- The level-set PDE is solved to update the distance field
- Basic framework with a variety of applications

Example: Diffusion Filtering

De-noising

- Original
- Linear isotropic
- Non-linear isotropic
- Non-linear anisotropic

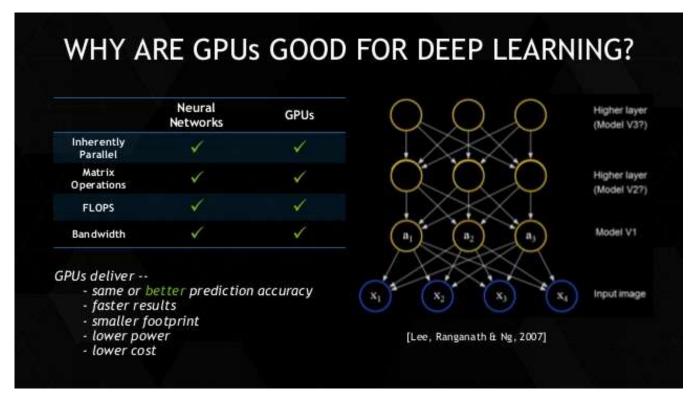



Example: Linear Algebra Operators

Vector and matrix representation and operators

- Early approach based on graphics primitives
- Now CUDA makes this much easier
- Linear systems solvers

Example: Machine Learning / Deep Learning

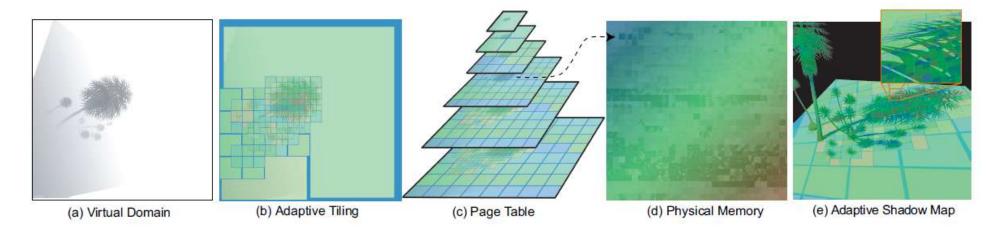


Perfect fit for massively parallel computation

- NVIDIA Volta Architecture: Tensor Cores (mixed-prec. 4x4 matrix mult plus add)
- NVIDIA Turing Architecture: Improved Tensor Cores, ...

Frameworks

 TensorFlow, Caffe, Pytorch, Teano, ...



Example: GPU Data Structures

Glift: Generic, Efficient, Random-Access GPU Data Structures

- "STL" for GPUs
- Virtual memory management

Courtesy Lefohn et al.

Programming Assignments: Basics

5 assignments

• Based on C/C++, OpenGL, and CUDA

Organization

- 1. Explanation in readme, and during lecture (and Q&A sessions if required)
- 2. Get framework online (*bitbucket+git*)
- 3. Submit solution and report online (*bitbucket+git*) by submission deadline
- 4. Personal presentation after submission

Programming Assignments: People

Teaching Assistants:

• Peter Rautek (peter.rautek@kaust.edu.sa) – programming assignments; assignment presentations

• Amani Ageeli (amani.ageeli@kaust.edu.sa) – programming questions; general help

Need Help?

- 1. Google, Stackoverflow, ...
- Ask your fellow students!
 Discussions and explanations are encouraged! (but: copying code is not allowed)
- 3. Contact us: Peter peter raute

Peter <u>peter.rautek@kaust.edu.sa</u> Amani <u>amani.ageeli@kaust.edu.sa</u>

Playing with the GPU

GPU programming comes in different flavors:

- Graphics: OpenGL, DirectX, Vulkan
- Compute: CUDA, OpenCL

In this course we will:

- Learn to use CUDA and OpenGL
- Wrap our heads around parallelism
- Learn the differences and commonalities of graphics and compute programming

Format:

- 5 Pre-specified programming assignments
- 1 Capstone (semester) project that you can define yourself

Programming Assignments: Where to Start

- Source code is hosted on bitbucket.org
- Register with your kaust.edu.sa email address (will give you unlimited plan – nice!)
- Go to the repo <u>https://bitbucket.org/rautek/cs380-2020</u> (or simply search on bitbucket for cs380) and fork it
- Get a git client <u>http://git-scm.com/downloads</u> and clone your own repo
- Follow the readme text-file
- Do your changes in the source code for assignment 1, commit, and push (to your own repo)
- Contact Peter Rautek if you have problems or questions (peter.rautek@kaust.edu.sa)

Programming Assignment 1

Set up your development environment

- Visual Studio 2015 (or 2017, 2019) (<u>https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16</u>)
- CUDA 10.1 (https://developer.nvidia.com/cuda-downloads)
- git (https://git-scm.com/downloads)
- Fork the CS380 repository (https://bitbucket.org/rautek/cs380-2020)
- Follow the readme and start coding

Query your graphics card for its capabilities (CUDA and OpenGL)

	14
static linking)	
1 σ' - δ' -	
ersian = 6.0, CDIN Huntime Varuian = 6.0, HunDous = 1, Device0 = GeForce GTX 680	4
	$ \begin{array}{c} g \neq f \neq f \\ g \neq f $

Programming Assignment 1 – Setup

- Programming
 - Query hardware capabilities (OpenGL and CUDA)
 - Instructions in readme.txt file
- Submission (via bitbucket)
 - Program
 - Short report (1-2 pages, pdf), including short explanation of program, problems and solutions, how to run it, screenshots, etc.
- Personal assessment
 - Zoom meeting with Peter
 - Max. 15 minutes, present program + source code

OpenGL Check	Driver Supports and Inf	ormation
	GL Vendor GL Renderer GL Version	: NUIDIA Corporation : Quadro 6000/PCI/SSE2 : 4.1.0
	GLEW Version	: 1.7.0
	3D Texture 1D Texture Array 2D Texture Array 2D Texture Size 3D Texture Size Framebuffer Objects	: Supported : Supported : Supported : 16384 : 2048 : Supported
	Max Draw Buffers Max Tex Units Vert Max Tex Units Geom Max Tex Units Frag Max Vertex Attributes Max Varying Floats	: 8 : 32 : 32 : 32 : 32 : 16 : 60
	GLSL GLSL Version GLSL Geom Shader (ARB) GLSL Geom Shader (EXT)	: Supported : 4.10 NUIDIA via Cg compiler : Supported : Supported
CudaCheck	There are 2 devices sup	oporting CUDA
Device 1	Quadro 6000	
	CUDA Capability CUDA MP Count CUDA Cores	: 2.0 : 14 : 448
	Global Memory Shared Memory Registers / Block	= 4.000 GB = 48.00 KB = 32768
	Clock rate GPU Clock rate Memory	: 1.147 GHz : 1.494 GHz
	Warp Size	: 32
	CUDA Threads / Block CUDA Threads / Block CUDA Blocks / Grid	: 1024 : 1024 × 1024 × 64 : 65535 × 65535 × 65535
	2D Texture Size 3D Texture Size	: 65536 × 65535 : 2048 × 2048 × 2048
	CUDA Timeout	: true
Device 2	guadro 6000	
	CUDA Capability CUDA MP Count CUDA Cores	: 2.0 : 14 : 448
	Global Memory Shared Memory Registers / Block	= 4.000 GB = 48.00 KB = 32768
	Clock rate GPU Clock rate Memory	: 1.147 GHz : 1.494 GHz
	Warp Size	: 32
	CUDA Threads / Block CUDA Threads / Block CUDA Blocks / Grid	: 1024 : 1024 × 1024 × 64 : 65535 × 65535 × 65535
	2D Texture Size 3D Texture Size	= 65536 × 65535 = 2048 × 2048 × 2048
	CUDA Timeout	: true
CudaCheck	Driver Supports and Inf	ormation
	CUDA Driver Version CUDA Driver Version	: 4.0 : 4.0

Programming Assignments: Grading

- Submission complete, code working for all the required features
- Documentation complete (report, but also source code comments!)
- Personal presentation
- Optional features, coding style, clean solution
- Every day of late submission reduces points by 10%
- No direct copies from the Internet! You have to understand what you program: your explanations during the presentations will be part of the grade!

Programming Assignments: Schedule (tentative)

Assignment #1:

 Querying the GPU (OpenGL/GLSL and CUDA) 	due Sep 7
Assignment #2:	
 Phong shading and procedural texturing (GLSL) 	due Sep 21
Assignment #3:	
 Image Processing with GLSL 	due Oct 5
Assignment #4:	
 Image Processing with CUDA 	
 Convolutional layers with CUDA 	due Oct 26
Assignment #5:	
 Linear Algebra (CUDA) 	due Nov 16

Semester Project

- Choosing your own topic encouraged! (we will also suggest some topics)
 - Pick something that you think is really cool!
 - Can be completely graphics or completely computation, or both combined
 - Can be built on CS380 frameworks, NVIDIA OpenGL SDK, or CUDA SDK
- Write short (1-2 pages) project proposal by end of Sep (announced later)
 - Talk to us before you start writing! (content and complexity should fit the lecture)
- Submit semester project with report (deadline: Dec 10)
- Present semester project (event at beginning of final exams week)

Reading Assignment #1 (until Sep 7)

Read (required):

- Orange book, chapter 1 (Review of OpenGL Basics)
- Orange book, chapter 2 (*Basics*)

Thank you.