A
" %:‘bd o hdUT chn Pg; ((( ‘)), KAUST

N

CS 247 — Scientific Visualization
Lecture 7: Data Representation, Pt. 5;
Scalar Field Visualization, Pt. 1

Markus Hadwiger, KAUST |




Reading Assignment #4 (until Feb 22)

Read (required):

» Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive
(Terminology, Types of Light Sources, Gradient-Based Illlumination,
Local lllumination Models)

» Paper:
Marching Cubes: A high resolution 3D surface construction algorithm,
Bill Lorensen and Harvey Cline, ACM SIGGRAPH 1987
[> 22,100 citations and counting...]

https://dl.acm.org/doi/10.1145/37402.37422
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Programming Assignments Schedule (tentative

Assignment O0:  Lab sign-up: join discord, setup github account + getrepo  until Feb 1

Basic OpenGL example

Assignment 1:  Volume slice viewer untii  Feb 15
Assignment 2:  Iso-contours (marching squares) untii  Mar 1
Assignment 3: Iso-surface rendering (marching cubes) untii  Mar 15
Assignment 4: Volume ray-casting, part 1 until  Apr 12
Volume ray-casting, part 2 until  Apr 19

Assignment 5:  Flow vis, part 1 (hedgehog plots, streamlines, pathlines) unti May 3

Assignment 6:  Flow vis, part 2 (LIC with color coding) unti  May 13
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Programming Assignment 2

CS247 - Scientific Visualization - Marching Squares -




Programming Assignment 2 + 3

CS247 - Scientific Visualization - Marching Squares - o
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Programming Assignment 2 + 3

CS247 - Scientific Visualization - Marching Squares -
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Programming Assignment 3 )

€5247 - Scientific Visualization - Marching Cubes -

C€S247 - Scientific Visualization - Marching Cubes —




Common Unstructured Grid Types (1)

« Simplest: purely tetrahedral

Markus Hadwiger



Unstructured grids

3D unstructured grids:

« cells are tetrahedra or hexahedra

« mixed grids ("zoo meshes”) require additional types:
wedge (3-sided prism), and pyramid (4-sided)

Ronald Peikert



(Nearly) arbitrary polyhedra

* Possibly non-planar faces

Markus Hadwiger




Example: General Polyhedral Cells

Exhaust manifold

* 81,949 general, non-convex cells
(equivalent to 4,094,724 tetrahedral cells!)

« 324,013 vertices

 Color coding: temperature distribution

Markus Hadwiger "



Unstructured Grid (Mesh)

Data Structures




Unstructured 2D Grid: Direct Storage

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

2
x1,yl,z1 =]
coords for 3 v3. z3 struct face 1
vertex 1 X3,¥3,23 float verts[3][3]
xl,yl,z1 — DataType val;
x3,y3,23 face 2 GL_CCW
x4,y4,z4 4 (if orientable

e manifold)

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 13



Unstructured 2D Grid: Indirect Storage

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

2
5
vertex list face list
x1l,vy1l, (z1) 1,2,3 3
x2,y2, (z2) 1,3,4
coords for x3,y3, (z3) 2.1,5
vertex 1 x4,y4, (z4) GL_CCW

(if orientable
manifold)

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)

Markus Hadwiger, KAUST 14
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Unstructured 2D Grids: Connectivity/Incidence

Half-edge (doubly-connected edge list) data structure

 Pointer to half-edge (twin) in neighboring face
(mesh needs to be orientable 2-manifold)

 Pointer to next half-edge in same face

» Half-edge associated with one vertex, edge, face

Modifications: attributes, mesh simplification, ...

 Vertices, corners, wedges, faces

« Express attribute continuity vs. discontinuity ’ ’
ugues rioppe

Visualization often needs volumetric version of these ideas
(tet meshes, polyhedral meshes, ...)

Markus Hadwiger, KAUST 15



3D Grids: Two-Sided Face Sequence Lists

General polyhedral grids (arbitrary polyhedral cells); example: TSFSL (Muigg et al., 2011)

standard face/cell incidence two-sided face (sequence) lists
Cells Ty, Face Sequences
1: a, e, a: £ | b Front [ cl[ e] [c]
2: a; b; ¢ b: ¢ | - [c d e] [a £] [b]
3+ g; d; @ c: d| a Back [a - a] [b -] [-]
d: e | -
; ; : ? D *nextfacebackfacing
f next face front facing
front link back link
d
(b) () ¢

Exhaust Manifold Heater

Cooling Jacket

Cells/Vertices/Faces: 1,538K/1,631K/4,707K 1,362K/7,432K / 8,869K 82K/ 324K/ 441K 17K/ 68K /91K
Tetrahedra: 17,044K (~8.5 byte/tet) 89,417K (~7.5 byte/tet) 4,095K (~7.0 byte/tet) 851K (~7.0 byte/tet)
Celltypes: tets/pyramids/wedges/hexas general (non-convex) polyhedra general (non-convex) polyhedra general (non-conv.) polyh.
Bricks/Cell Overhead: 4/1.7% 10/8.6% 1/0% 1/0%

TSFSL Creation Time:  4.0s 9.0s 1.7s 1.0s

Markus Hadwiger, KAUST 16



Scalar Fields




Scalar Fields are Functions

1D scalarfield: Q C K — R
« 2D scalar field: ) C R2 — R

.3D scalar field: ) C RS — R

— volume visualization!

more generally: () C n-manifold



Basic Visualization Strategies

Mapping to geometry
* Function plots
« Height fields

* Isocontours/isolines, isosurfaces
Color mapping

Specific techniques for 3D data
* Indirect volume visualization
* Direct volume visualization
« Slicing

Visualization methods depend heavily on dimensionality of domain

Markus Hadwiger, KAUST 19



Function Plots and Height Fields (1)

Function plot for a 1D scalar field

1(x, f(x))]x € R}

X214 340,14 ——

- Points it \
* 1D manifold: line
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Markus Hadwiger, KAUST 20



Function Plots and Height Fields (1)

Function plot for a 1D scalar field

(s, f(s))|s € R}

X214 340,14 ——

- Points it \
* 1D manifold: line
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Function Plots and Height Fields (2)

Function plot for a 2D scalar field
2
1%, f(x))[x e R7}

e Points

« 2D manifold: surface

Surface representations
* Wireframe

 Hidden lines
 Shaded surface

Markus Hadwiger, KAUST 22



Function Plots and Height Fields (2)

Function plot for a 2D scalar field
{(s,0,f(s,1)) |(s,1) € R?}

e Points

« 2D manifold: surface

Surface representations
* Wireframe

 Hidden lines
 Shaded surface

Markus Hadwiger, KAUST 23



Color Mapping / Color Coding

Map scalar value to color
 Color table (e.g., array with RGB entries)

* Procedural computation; manual specification

With opacity (alpha value “A”): 1D transfer function (RGBA table, ...)

grayscale , rainbow

not recommended!



Color Mapping / Color Coding

Map scalar value to color
 Color table (e.g., array with RGB entries)

* Procedural computation; manual specification

With opacity (alpha value “A”): 1D transfer function (RGBA table, ...)

rainbow

not recommended!



Contours

Set of points where the scalar field s has a given value c:

Se):=f"1c) S():={xeR": f(x)=c}

bilinear interpolation

Common contouring algorithms
» 2D: marching squares, marching triangles

« 3D: marching cubes, marching tetrahedra

Implicit methods linear interpolation

* Point-on-contour test

* Isosurface ray-casting

Markus Hadwiger, KAUST 26



Contours

Set of points where the scalar field s has a given value c:

S(e):=f""c) S(c):={xeR*: f(x)=c}

bilinear interpolation

Common contouring algorithms
» 2D: marching squares, marching triangles

« 3D: marching cubes, marching tetrahedra

Implicit methods linear interpolation

* Point-on-contour test

* Isosurface ray-casting

Markus Hadwiger, KAUST 27



Contours

Set of points where the scalar field s has a given value c:

S(@)=f"e) S(c):={xeR: f(x)=c}

bilinear interpolation

Common contouring algorithms
» 2D: marching squares, marching triangles

« 3D: marching cubes, marching tetrahedra

Implicit methods linear interpolation

* Point-on-contour test

* Isosurface ray-casting

Markus Hadwiger, KAUST 28



What are contours?
Set of points where the scalar field s has a given value c:
S(c) :={xeR": f(x) =c}

Examples in 2D:
* height contours on maps

* isobars on weather maps

Contouring algorithm:
 find intersection with grid edges

e connect points in each cell

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

2-2



Example

(1) (2) contour levels

— 4
-~ 47

6-¢
— 8-¢
- —— 8+e

2 types of degeneracies:
* isolated points (c=6)

Ronald Peikert

+ flat regions (c=8)

SciVis 2009 - Contouring and Isosurfaces

2-3



Contours in a quadrangle cell

Basic contouring algorithms:

« cell-by-cell algorithms: simple structure, but generate
disconnected segments, require post-processing

« contour propagation methods: more complicated, but
generate connected contours

"Marching squares” algorithm (systematic cell-by-cell):
* process nodes in ccw order, denoted here as xp,X1,X2,X3

* compute at each node X; the reduced field
f(x;) = f(x;) — (c — &) (which is forced to be nonzero)

« take its sign as the it" bit of a 4-bit integer

» use this as an index for lookup table containing the connectivity
iInformation:

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-10



Contours in a quadrangle cell
o flxi)>
@ Ll . Iﬁ Alternating signs exist
INn cases 6 and 9.
Choose the solid or
dashed line?
Both are possible for
11

topological
consistency.
This allows to have a
fixed table of 16
12 13 14 15 ——

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces



Contours in a quadrangle cell

LINTAE S
o f(xi)>c

EIL

l . Iﬁ Alternating signs exist
In cases 6 and 9.

Choose the solid or
dashed line?
Both are possible for
11

ETD

12

Ronald Peikert

topological
consistency.
This allows to have a
) 4 » fixed table of 16

cases.

SciVis 2009 - Contouring and Isosurfaces 2-11



Contours in a quadrangle cell

INDE
O f(xi)>c

EIL

l . Iﬁ Alternating signs exist
In cases 6 and 9.

Choose the solid or
dashed line?
Both are possible for
11

ETD

12

Ronald Peikert

topological
consistency.
This allows to have a
) 4 » fixed table of 16

cases.

SciVis 2009 - Contouring and Isosurfaces 2-11



Orientability (1-manifold embedded in 2D)

not orientable

Orientability of 1-manifold:

Possible to assign consistent left/right orientation

Moebius strip
|so-contours (only one side!)

« Consistent side for scalar values...

« greater than iso-value (e.q, left side) I

* less than iso-value (e.g., right side)

« Use consistent ordering of vertices

@
O .
(e.g., larger vertex index is “tip” of arrow; f(xz) >0
if (0,1) points “up”, “left” is left, ...)
1

Markus Hadwiger, KAUST 35
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Orientability (2-manifold embedded in 3D)

not orientable

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

Moebius strip

Triangle meshes (only one side!)
 Edges
 Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)
(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side) 2
* Triangles
 Consistent front side vs. back side 3
* Normal vector; or ordering of vertices (CCW/CW) 1
 See also: “right-hand rule” GL_CCW

Markus Hadwiger, KAUST 36
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