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Reading Assignment #14 (until May 11)

Read (required):

• Data Visualization book, Chapter 6.7

• J. van Wijk: Image-Based Flow Visualization,
ACM SIGGRAPH 2002

http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

Read (optional):
• T. Günther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:

Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite 
Winds of an Atmospheric Karman Vortex Street, 2021

https://www.essoar.org/doi/10.1002/essoar.10506682.2

• H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition – A Survey, TVCG 19(8), 2013

https://doi.org/10.1109/TVCG.2012.316

• Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE (3Blue1Brown)

• Matrix exponentials:

https://www.youtube.com/watch?v=O85OWBJ2ayo (3Blue1Brown)



3

Quiz #3: May 14?

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assignments (except optional ones)

• Programming assignments (algorithms, methods)

• Solve short practical examples



Line Integral Convolution (LIC)Line Integral Convolution (LIC)



stream lines

stream lines

stream lines shows high





















Convolution Example

Gaussian Blur

en.wikipedia.org/wiki/Gaussian_blur

Cut off filter kernel after an extent of, e.g.,
3*standard deviation in each direction

Example:

Can do multiple iterations to achieve
larger effective filter size



































Linear Algebra Approach (1)

• Toeplitz matrix: constant diagonals



Linear Algebra Approach (2)

• Circulant matrix: special case of Toeplitz matrix

• Periodic convolution: multiply C with (periodic) signal in column vector

• The Fourier transform diagonalizes circulant matrices



Interlude:
Derivatives via Convolution

Interlude:
Derivatives via Convolution



Convolve with Derivatives of Kernel

Example

• Cubic B-spline and derivatives

• Use 1D kernels and
tensor product for tri-cubic

• Well-suited for
curvature computation
[Kindlmann et al., 2003]

• Expensive convolution?
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Fast Tri-Cubic Filtering on GPUs

Cubic: Need 64 neighbors; usually means 64 nearest-neighbor lookups

• But on GPUs 8 tri-linear lookups suffice for tri-cubic B-spline

• Kernels are transformed into 1D look-up textures (or simple equations)

• Newer: procedural kernel computation (see NVIDIA CUDA SDK)
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[Sigg and Hadwiger, 2005]  (GPU Gems 2)



Vector Fields, Vector Calculus,
and Dynamical Systems

Vector Fields, Vector Calculus,
and Dynamical Systems



Fluid Simulation: Navier Stokes Equations

Incompressible (divergence-free) Navier Stokes equations

Components:

• Self-advection of velocity (i.e., advection of velocity according to velocity)

• Pressure gradient (force due to pressure differences)

• Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

• Application of (arbitrary) external forces, e.g., gravity, user input, etc.
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Some Vector Calculus (1)

Gradient (scalar field → vector field)

• Direction of steepest ascent; magnitude = rate

• Conservative vector field: gradient of some scalar (potential) function

Divergence (vector field → scalar field)

• Volume density of outward flux:
“exit rate: source? sink?”

• Incompressible/solenoidal/divergence-free vector field: div u = 0
can express as curl (next slide) of some vector (potential) function

Laplacian (scalar field → scalar field)

• Divergence of gradient

• Measure for difference between point and its neighborhood



Some Vector Calculus (2)

Curl (vector field → vector field)

• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Example:
curl = const
everywhere

these are partial 
derivatives!



Some Vector Calculus (3)

Curl (vector field → vector field)

• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Example:
curl not
always
“obviously
rotational”

these are partial 
derivatives!



Some Vector Calculus (4)

Curl (vector field → vector field)

• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Example:
non-obvious
curl-free field

[this domain is not
simply connected! it is 
the “punctured plane”, 
i.e., the point (0,0) is 
not in the domain] velocity gradient v is 

symmetric (see later)

not defined at (x,y) = (0,0)

these are partial 
derivatives!



Some Vector Calculus (5)

Curl (vector field → vector field)

• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Book: Interactive tutorial on curl:
http://mathinsight.org/curl_idea

Fundamental theorem of vector calculus:
Helmholtz decomposition: Any vector field can be 
expressed as the sum of a solenoidal (divergence-free) 
vector field and an irrotational (curl-free) vector field
(Helmholtz-Hodge: plus harmonic vector field)

these are partial 
derivatives!



Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field → tensor field)

• Gradient of vector field: how does the vector field change?

• In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

v

• Can be decomposed into symmetric part + anti-symmetric part

v = D + S velocity gradient tensor

sym.: D = ½ ( v + (v)T ) deform.:    rate-of-strain tensor

skew-sym.: S = ½ ( v – (v)T ) rotation: vorticity/spin tensor

these are
partial derivatives!



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor

• Antisymmetric part of velocity gradient tensor

• Corresponds to vorticity/curl/angular velocity (beware of factor ½)

S = ½ ( v – (v)T )

S = ½

S acts on vector like cross product with     :   S    = ½

these are
partial
derivatives!



Angular Velocity of Rigid Body Rotation

Rate of rotation

• Scalar ω: angular displacement per unit time (rad s-1)
– Angle ϴ at time t is ϴ(t) = ωt; ω = 2πf where f is the frequency (f = 1/T; s-1)

• Vector ω: axis of rotation; magnitude is angular speed (if ω is curl: speed x2)
– Beware of different conventions that differ by a factor of ½ !

Cross product of ½ω with vector to center of
rotation (r) gives linear velocity vector v (tangent)



Velocity Gradient Tensor and Components (1)

Velocity gradient tensor

(here: in Cartesian coordinates)

these are the same
partial derivatives
as before!



Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)



Velocity Gradient Tensor and Components (3)

Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)



Critical Point AnalysisCritical Point Analysis



Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

Sources (red), sinks (blue), saddles (yellow)
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(Non-Linear) Dynamical Systems

Start with system of linear ODEs (with constant coefficients)

• Non-linear systems can be linearized around critical points

• Use linearization for characterization

solution:

characterize behavior
through eigenvalues of A



A Few Facts about Eigenvalues and –vectors

The matrix             has eigenvalues

with eigenvectors

If c = 0, this is a skew-symmetric matrix: pure imaginary eigenvalues

Skew-symmetric matrices: “infinitesimal rotations” (infinitesimal generators of rot.)

For                and              : 2x2 rotation matrix with

Eigenvalues

• Symmetric matrix: all eigenvalues are real

• Skew-symmetric matrix: all eigenvalues are pure imaginary
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(if s non-zero)



Euler’s Formula

Can be derived from the infinite power series for exp(), cos(), sin()
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Exponentials of anti-symmetric matrices are rotation matrices
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Complex eigenvalues lead to rotation
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Classification of Critical Points (1)

(Isolated) critical point (equilibrium point)

• Velocity vanishes (all components zero)

Characterize using velocity gradient v at critical point

• Look at eigenvalues (and eigenvectors) of v  

det( v(x ) )0

the first three phase portraits are special cases, see later slides!

c c c

xc



Classification of Critical Points (2)
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A Few Details (1)

Repelling/attracting nodes

• Do not necessarily imply that streamlines are straight lines
(do not confuse with the linear system of ODEs!)

• They are only straight lines when both eigenvalues are real and have 
the same sign, and are also equal (as in the phase portraits before)

• If they are not equal:
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A Few Details (2)

What about skew axes?

• Both of the systems below have eigenvalues 3 and 6

• Jordan normal form (Jordan canonical form) gives details
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Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing

• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
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(defective matrix)



Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing

• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
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(defective matrix)

same eigenvalues, 
trace, determinant!



Another Example
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has form

Eigenvalues:

λ1 = -1

λ2 = 2



Jordan Form Characterization (1)

Phase portraits corresponding to Jordan matrix
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Jordan Form Characterization (2)

Phase portraits corresponding to Jordan matrix
(matrix is defective: eigenspaces collapse,
geometric multiplicity less than algebraic multiplicity)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (3)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (4)
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Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

Sources (red), sinks (blue), saddles (yellow)
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Vector Field Topology: Topological Skeleton

Connect critical points by separatrices
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Index of Critical Points / Vector Fields

Poincaré index (in scalar field topology we have the Morse index)

• Can compute index (winding number) for each critical point

• Index of a region is the sum of the critical point indexes inside

• Sum of all indexes over a manifold is its Euler characteristic

Do a loop (Jordan curve) around each critical point: the index is its
(Brouwer) degree: integer how often the vector field along the loop turns 
around (determined by angle 1-form integrated over oriented 1-manifold)



Higher-Order Critical Points

Higher than first-order

• Sectors can by elliptic, parabolic, hyperbolic

• For index sum over number of elliptic and hyperbolic sectors
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(see monkey saddle)(dipole)



Example: Differential Topology

Topological information from vector fields on manifold

• Independent of actual vector field! Poincaré-Hopf theorem (sum of indexes == Euler char.)

• Useful constraints: vector field editing, simplification, sphere always has critical point, …

Topological invariant: Euler characteristic          of manifold
(for 2-manifold mesh:                               )

Markus Hadwiger, KAUST 74

genus g=0
Euler characteristic 2

genus g=1
Euler characteristic 0

genus g=2
Euler characteristic -2

(orientable)



Example: Vector Field Editing

Guoning Chen et al., Vector Field Editing and Periodic Orbit 
Extraction Using Morse Decomposition, IEEE TVCG, 2007
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Recommended Books (1)



Recommended Books (2)



Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


