

King Abdullah University of Science and Technology

### CS 247 – Scientific Visualization Lecture 26: Vector / Flow Visualization, Pt. 5

Markus Hadwiger, KAUST



### Reading Assignment #14 (until May 11)

#### Read (required):

- Data Visualization book, Chapter 6.7
- J. van Wijk: *Image-Based Flow Visualization*, ACM SIGGRAPH 2002

http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

#### Read (optional):

• T. Günther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler: Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite Winds of an Atmospheric Karman Vortex Street, 2021

https://www.essoar.org/doi/10.1002/essoar.10506682.2

- H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer: *The Helmholtz-Hodge Decomposition – A Survey*, TVCG 19(8), 2013 https://doi.org/10.1109/TVCG.2012.316
- Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE(3Blue1Brown)

• Matrix exponentials:

https://www.youtube.com/watch?v=0850WBJ2ayo(3Blue1Brown)

# Integral Curves, Pt. 2

### Integral Curves





### Stream Lines vs. Path Lines Viewed Over Time

### Plotted with time as third dimension

• Tangent curves to a (n + 1)-dimensional vector field



### Stream Lines

Path Lines

### Streamline

• Curve parallel to the vector field in each point for a fixed time

### Pathline

• Describes motion of a massless particle over time

### Streakline

• Location of all particles released at a *fixed position* over time

### Timeline

• Location of all particles released along a line at a *fixed time* 



#### Time

#### streak line

#### location of all particles set out at a fixed point at different times

Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

### Surfaces Instead of Lines



Seeding from a line instead of from a point

Example: streak surfaces



Volumes: seeding from a surface instead of a line

### Real "Streak Surfaces"



### Artistic photographs of smoke





streak surface



Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

#### Smoke Nozzles









[Data courtesy of Günther (TU Berlin)]

fixed zero opacity rows

break connectivity

#### **Particle visualization**

#### 2D time-dependent flow around a cylinder

#### time line

#### location of all particles set out on a certain line at a fixed time

Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

### Streak Lines vs. Time Lines



### (on a streak surface)



**Streak Lines** 

**Time Lines** 

Streak and Time Lines





Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

Flow of a steady (time-independent) vector field

• Map source position x "forward" (t>0) or "backward" (t<0) by time t



with  $\phi_0(x) = x$  $\phi_s(\phi_t(x)) = \phi_{s+t}(x)$ 



Flow of a steady (time-independent) vector field

• Map source position x "forward" (t>0) or "backward" (t<0) by time t



with  $\phi_0(x) = x$  $\phi_s(\phi_t(x)) = \phi_{s+t}(x)$ 



Flow of a steady (time-independent) vector field

• Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$\begin{array}{c} \phi(x,t) \\ \phi(x,t) \\ \phi: M \times \mathbb{R} \to M, \\ (x,t) \mapsto \phi(x,t). \\ \end{array} \qquad \begin{array}{c} \phi_t(x) \\ \phi_t: M \to M, \\ x \mapsto \phi_t(x). \\ \end{array}$$

with  $\phi_0(x) = x$  $\phi_s(\phi_t(x)) = \phi_{s+t}(x)$ 

$$\phi(x,t) = x + \int_0^t \mathbf{v}(\phi(x,\tau)) \,\mathrm{d}\tau$$

(on a general manifold *M*, integration is performed in coordinate charts)



Flow of a steady (time-independent) vector field

• Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$\begin{array}{c} \phi(x,t) \\ \phi_t(x) \\ \phi_t(x) \\ \phi_t: M \to M, \\ (x,t) \mapsto \phi(x,t). \\ x \mapsto \phi_t(x). \end{array}$$

with  $\phi_0(x) = x$  $\phi_s(\phi_t(x)) = \phi_{s+t}(x)$ 

Unsteady flow? Just fix arbitrary time T

$$\phi(x,t) = x + \int_0^t \mathbf{v}(\phi(x,\tau),\mathbf{T}) \,\mathrm{d}\tau$$

(on a general manifold *M*, integration is performed in coordinate charts)



Flow of a steady (time-independent) vector field

• Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$\begin{array}{c} \phi(x,t) \\ \phi(x,t) \\ \phi: M \times \mathbb{R} \to M, \\ (x,t) \mapsto \phi(x,t). \\ \end{array} \qquad \begin{array}{c} \phi_t(x) \\ \phi_t: M \to M, \\ x \mapsto \phi_t(x). \\ \end{array}$$

with  $\phi_0(x) = x$  $\phi_s(\phi_t(x)) = \phi_{s+t}(x)$ 

Can write explicitly as function of independent variable *t*, with *position x fixed* 

- $t \mapsto \phi(x,t) \qquad t \mapsto \phi_t(x)$ 
  - = stream line going through point *x*



19



Flow of an unsteady (time-dependent) vector field

 Map source position x from time s to destination position at time t (t < s is allowed: map forward or backward in time)</li>

$$\psi_{t,s}(x)$$

with

$$\psi_{t,s}(x) = x + \int_s^t \mathbf{v}(\psi_{\tau,s}(x), \tau) \,\mathrm{d}\tau$$

 $\psi_{s,s}(x) = x$  $\psi_{t,r}(\psi_{r,s}(x)) = \psi_{t,s}(x)$ 



Flow of an unsteady (time-dependent) vector field

 Map source position x from time s to destination position at time t (t < s is allowed: map forward or backward in time)</li>

$$\Psi_{t,s}(x) \qquad \Psi_{t,s}(x) = x + \int_s^t \mathbf{v}(\Psi_{\tau,s}(x), \tau) \,\mathrm{d}\tau$$

Can write explicitly as function of t, with s and x fixed

 $t \mapsto \psi_{t,s}(x) \longrightarrow \text{path line}$ 

Can write explicitly as function of s, with t and x fixed

 $s \mapsto \psi_{t,s}(x) \longrightarrow \text{streak line}$ 

 $\Psi_{t,s}(x)$  is also often written as *flow map*  $\phi_t^{\tau}(x)$  (with t:=s and either  $\tau$ :=t or  $\tau$ :=t-s)

Can map a whole set of points (or the entire domain) through the

flow map (this map is a *diffeomorphism*):  $t \mapsto \psi_{t,s}(U)$ 



Time line: Map a whole curve from one fixed time (s) to another time (t)

$$t\mapsto \psi_{t,s}(c(\lambda))$$



Time line: Map a whole curve from one fixed time (s) to another time (t)

$$t\mapsto \psi_{t,s}(c(\lambda))$$



# Line Integral Convolution (LIC)

# Line Integral Convolution

- Line Integral Convolution (LIC)
  - Visualize dense flow fields by imaging its integral curves
  - Cover domain with a random texture (so called ,input texture', usually stationary white noise)
  - Blur (convolve) the input texture along stream lines using a specified filter kernel
- Look of 2D LIC images
  - Intensity distribution along stream lines shows high
    - correlation
  - No correlation
     between
     neighboring
     stream lines



# Line Integral Convolution I

- Line Integral Convolution (LIC):
  - goal: general overview of flow
  - approach: use dense textures
  - idea: flow ↔ visual correlation



# Line Integral Convolution I

- Line Integral Convolution (LIC):
  - goal: general overview of flow
  - approach: use dense textures
  - idea: flow ↔ visual correlation



# Line Integral Convolution II



#### • Idea

- global visualization technique
- dense representation
- start with random texture
- smear along stream lines
- Only for stream lines!
   (steady flow, i.e. time-independent fields)



# Line Integral Convolution III



- How LIC works
  - visualize dense flow fields by imaging integral curves
  - cover domain with a random texture ('input texture', usually stationary white noise)
  - blur (convolve) the input texture along stream lines



# Line Integral Convolution III



- How LIC works
  - visualize dense flow fields by imaging integral curves
  - cover domain with a random texture ('input texture', usually stationary white noise)
  - blur (convolve) the input texture along stream lines



# Line Integral Convolution III



- How LIC works
  - visualize dense flow fields by imaging integral curves
  - cover domain with a random texture ('input texture', usually stationary white noise)
  - blur (convolve) the input texture along stream lines



# Line Integral Convolution IV

- Look of 2D LIC images
  - intensity along stream lines shows high correlation
  - no correlation between neighboring stream lines





# LIC Approach - Goal



- For every texel: let the texture value
  - correlate with neighboring texture values along the flow (in flow direction)
  - not correlate with neighboring texture values
     across the flow (normal to flow direction)
- Result: along streamlines the texture values are correlated 
   ✓ visually coherent!



# LIC Approach - Steps

- Idea: "smear" white noise (no a priori correlations) along flow
- Calculation of a texture value:
  - follow streamline through point
  - filter white noise along streamline



### **Convolution Example**

#### **Gaussian Blur**

en.wikipedia.org/wiki/Gaussian\_blur

# Cut off filter kernel after an extent of, e.g., 3\*standard deviation in each direction

### Example:

| 0.0000067  | 0.00002292 | 0.00019117 | 0.00038771 | 0.00019117 | 0.00002292 | 0.0000067  |
|------------|------------|------------|------------|------------|------------|------------|
| 0.00002292 | 0.00078634 | 0.00655965 | 0.01330373 | 0.00655965 | 0.00078633 | 0.00002292 |
| 0.00019117 | 0.00655965 | 0.05472157 | 0.11098164 | 0.05472157 | 0.00655965 | 0.00019117 |
| 0.00038771 | 0.01330373 | 0.11098164 | 0.22508352 | 0.11098164 | 0.01330373 | 0.00038771 |
| 0.00019117 | 0.00655965 | 0.05472157 | 0.11098164 | 0.05472157 | 0.00655965 | 0.00019117 |
| 0.00002292 | 0.00078633 | 0.00655965 | 0.01330373 | 0.00655965 | 0.00078633 | 0.00002292 |
| 0.00000067 | 0.00002292 | 0.00019117 | 0.00038771 | 0.00019117 | 0.00002292 | 0.00000067 |

Note that 0.22508352 (the central one) is 1177 times larger than 0.00019117 which is just outside  $3\sigma$ .

# Can do multiple iterations to achieve larger effective filter size



### StDev = 3

StDev = 10



• Convolution defined as  $(f * g)(x) := \int_{\mathbb{R}^n} f(\tau)g(x - \tau)d\tau$ 





• Convolution defined as  $(f * g)(x) := \int_{\mathbb{R}^n} f(\tau)g(x - \tau)d\tau$ 







$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

|  |  | 2 | 25 | £ | - | 1 | 5 |
|--|--|---|----|---|---|---|---|
|  |  |   |    |   |   |   |   |
|  |  |   |    |   |   |   |   |
|  |  |   |    |   |   |   |   |



$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

|  |  | - |  |  | 5 |
|--|--|---|--|--|---|
|  |  |   |  |  |   |



 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 2$ 

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

|  |  |  | 1 |  |  |  |
|--|--|--|---|--|--|--|
|  |  |  |   |  |  |  |
|  |  |  |   |  |  |  |



 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 2$ 

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 3 |  |  |  |
|---|--|--|--|
|---|--|--|--|

### k(x) convolution kernel





$$\frac{1}{4} \cdot 4 + \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 0$$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 0 |  |  |  |  |  |
|---|--|--|--|--|--|
| 3 |  |  |  |  |  |
|   |  |  |  |  |  |

### k(x) convolution kernel





$$\frac{1}{4} \cdot 4 + \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 0$$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 3 2 | 2 |  |  |  |  |
|-----|---|--|--|--|--|
|-----|---|--|--|--|--|

### k(x) convolution kernel





 $\frac{1}{4} \cdot 2 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 8$ 

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 3 2 |  |  |
|-----|--|--|
|-----|--|--|

### k(x) convolution kernel





 $\frac{1}{4} \cdot 2 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 8$ 

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 3 2 | 21/2 |  |  |  |  |
|-----|------|--|--|--|--|
|-----|------|--|--|--|--|

### k(x) convolution kernel





 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 8 + \frac{1}{4} \cdot 0$ 

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 3 2 | 21/2 |  |  |  | 5 |
|-----|------|--|--|--|---|
|-----|------|--|--|--|---|

### k(x) convolution kernel





 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 8 + \frac{1}{4} \cdot 0$ 

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f \* k)(x) smoothed signal

| 3 2 | 2 21/2 | 4 |  |  |  |  |  |  |  |
|-----|--------|---|--|--|--|--|--|--|--|
|-----|--------|---|--|--|--|--|--|--|--|



$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$





## LIC - Algorithm



for each pixel //perfect fit for fragment shader

```
t = texture( position, noise texture );
```

```
smoothed_value = kernel_value(center) * t;
P+ = p- = position;
```

```
for 1 to L // loop over kernel
```

```
v+ = texture( p+, vector_texture );
p+ = streamlineIntegration(p+, v+);
smoothed_value +=
    kernel_value * texture( p+, noise_texture );
```

```
v- = -texture( p-, vector_texture );
p- = streamlineIntegration(p-, v-);
smoothed_value +=
    kernel_value * texture( p-, noise texture );
```





## LIC - 2D Example





### Thank you.

### Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama