

King Abdullah University of Science and Technology

CS 247 – Scientific Visualization Lecture 25: Vector / Flow Visualization, Pt. 4

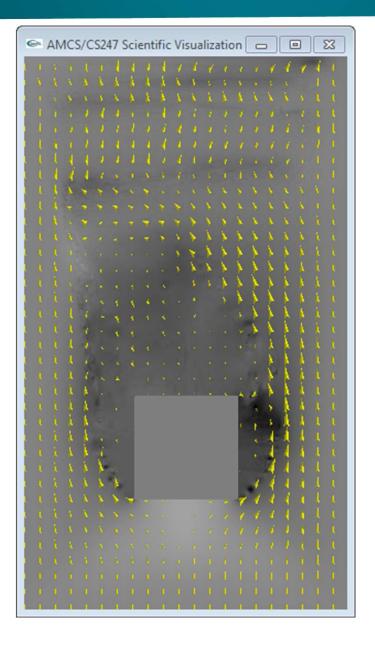
Markus Hadwiger, KAUST

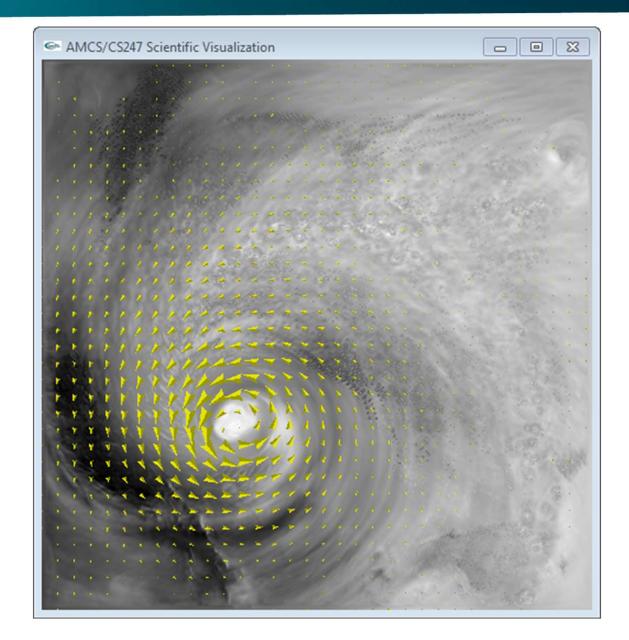
Reading Assignment #13 (until May 4)

Read (required):

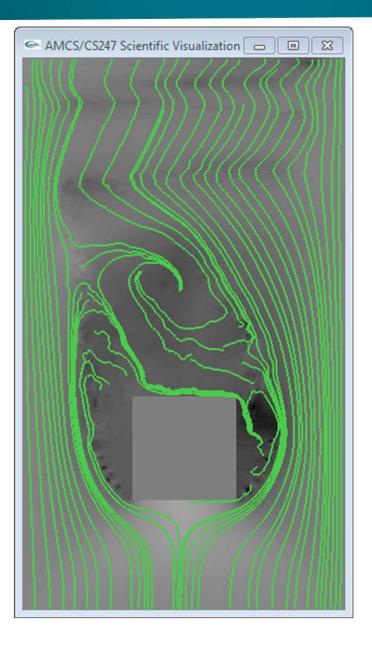
- Data Visualization book
 - Chapter 6.1 (Divergence and Vorticity)
 - Chapter 6.6 (Texture-Based Vector Visualization)
- Diffeomorphisms / smooth deformations https://en.wikipedia.org/wiki/Diffeomorphism
- Learn how convolution (the convolution of two functions) works: https://en.wikipedia.org/wiki/Convolution
- B. Cabral, C. Leedom: *Imaging Vector Fields Using Line Integral Convolution*, SIGGRAPH 1993 http://dx.doi.org/10.1145/166117.166151

Programming Assignment #5: Flow Vis 1

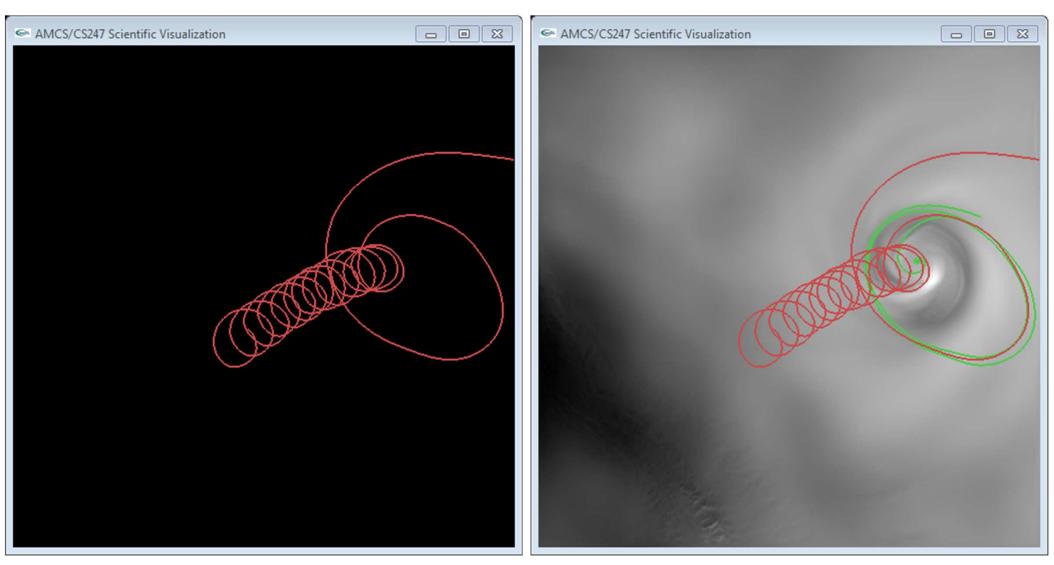




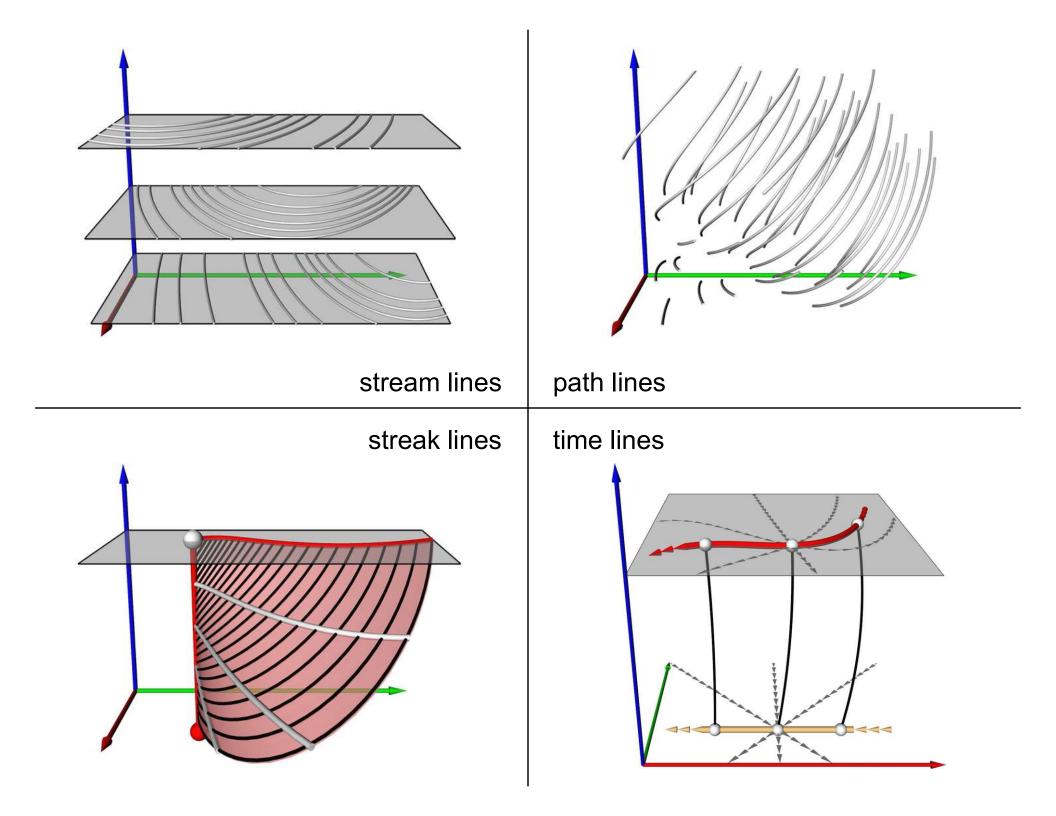
Programming Assignment #5: Flow Vis 1



Programming Assignment #5: Flow Vis 1



Vector / Flow Visualization



Comparison of techniques:

(1) Pathlines:

- are physically meaningful
- allow comparison with experiment (observe marked particles)
- are well suited for dynamic visualization (of particles)

(2) Streamlines:

- are only geometrically, not physically meaningful
- are easiest to compute (no temporal interpolation, single IVP)
- are better suited for static visualization (prints)
- don't intersect (under reasonable assumptions)

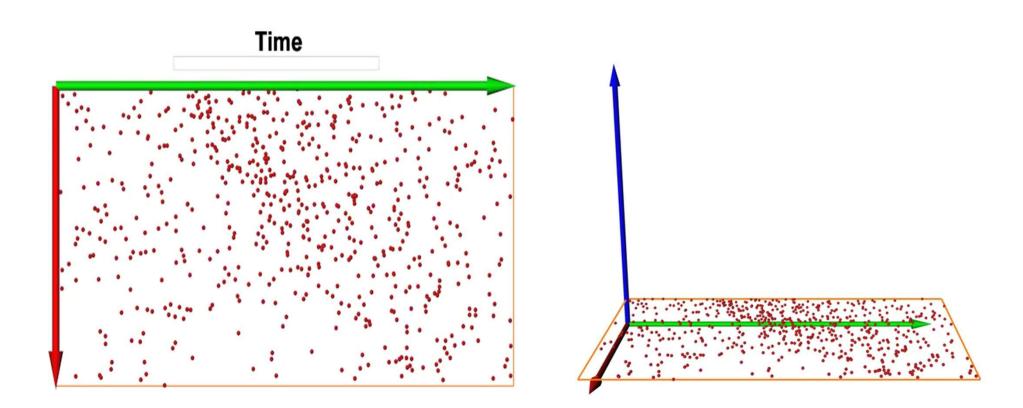
Streamlines, pathlines, streaklines, timelines

(3) Streaklines:

- are physically meaningful
- allow comparison with experiment (dye injection)
- are well suited for static and dynamic visualization
- good choice for fast moving vortices
- can be approximated by set of disconnected particles

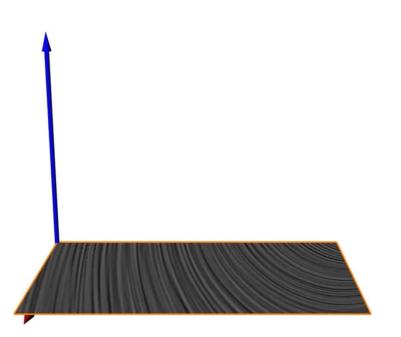
(4) Timelines:

- are physically meaningful
- are well suited for static and dynamic visualization
- can be approximated by set of disconnected particles



2D time-dependent vector field particle visualization

Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12



stream lines

curve parallel to the vector field in each point for a **fixed time**

describes motion of a massless particle in an **steady** flow field

path lines

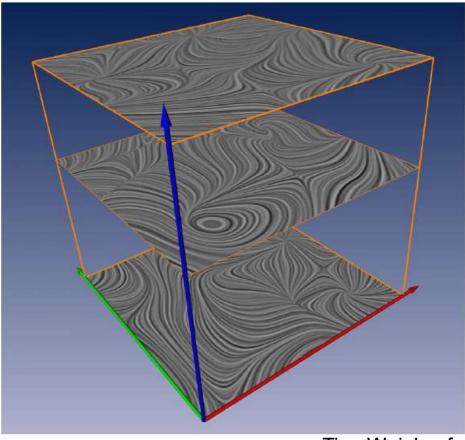
curve parallel to the vector field in each point **over time**

describes motion of a massless particle in an **unsteady** flow field

Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

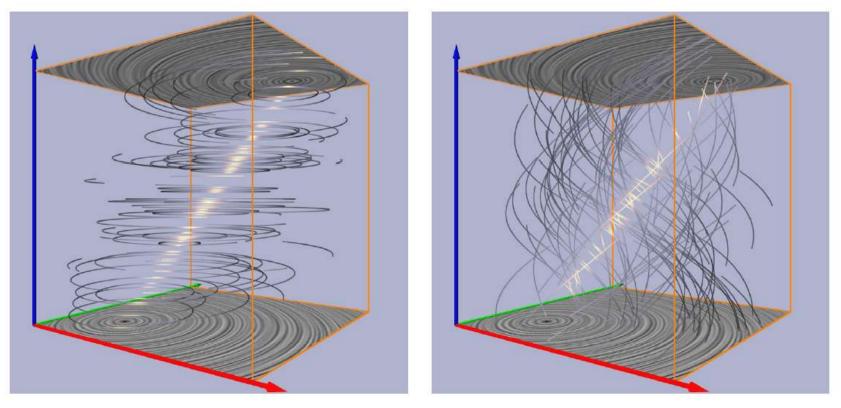
Different tangent curves in every time step for time-dependent vector fields (unsteady flow)



Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

• Tangent curves to a (n + 1)-dimensional vector field



Stream Lines

Path Lines

Vector fields as ODEs

For simplicity, the vector field is now interpreted as a velocity field. Then the field $\mathbf{v}(\mathbf{x}, t)$ describes the connection between location and velocity of a (massless) particle.

It can equivalently be expressed as an ordinary differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{v}\big(\mathbf{x}(t), t\big)$$

This ODE, together with an initial condition

$$\mathbf{x}(t_0) = \mathbf{x}_0$$
 ,

is a so-called initial value problem (IVP).

Its solution is the integral curve (or trajectory)

$$\mathbf{x}(t) = \mathbf{x}_{0} + \int_{t_{0}}^{t} \mathbf{v}(\mathbf{x}(\tau), \tau) d\tau$$

Ronald Peikert

The integral curve is a pathline, describing the path of a massless particle which was released at time t_0 at position x_0 .

Remark: $t < t_0$ is allowed.

For static fields, the ODE is autonomous:

$$\dot{\mathbf{x}}(t) = \mathbf{v}\big(\mathbf{x}(t)\big)$$

and its integral curves

$$\mathbf{x}(t) = \mathbf{x}_{0} + \int_{t_{0}}^{t} \mathbf{v}(\mathbf{x}(\tau)) d\tau$$

are called field lines, or (in the case of velocity fields) streamlines.

Vector fields as ODEs

In static vector fields, pathlines and streamlines are identical.

In time-dependent vector fields, instantaneous streamlines can be computed from a "snapshot" at a fixed time *T* (which is a static vector field)

$$\mathbf{v}_{T}(\mathbf{x}) = \mathbf{v}(\mathbf{x},T)$$

In practice, time-dependent fields are often given as a dataset per time step. Each dataset is then a snapshot.

Streamline integration

Outline of algorithm for numerical streamline integration (with obvious extension to pathlines):

Inputs:

- static vector field $\mathbf{v}(\mathbf{x})$
- seed points with time of release (\mathbf{x}_0, t_0)
- control parameters:
 - step size (temporal, spatial, or in local coordinates)
 - step count limit, time limit, etc.
 - order of integration scheme

Output:

 streamlines as "polylines", with possible attributes (interpolated field values, time, speed, arc length, etc.)

Streamline integration

Preprocessing:

- set up search structure for point location
- for each seed point:
 - global point location: Given a point x,
 - find the cell containing **x** and the local coordinates (ξ, η, ζ) or ir the grid is structured:
 - find the computational space coordinates $(i + \xi, j + \eta, k + \zeta)$
 - If **x** is not found in a cell, remove seed point

Integration loop, for each seed point **x**:

- interpolate **v** trilinearly to local coordinates (ξ, η, ζ)
- do an integration step, producing a new point x'
- incremental point location: For position x' find cell and local coordinates (ξ', η', ζ') making use of information (coordinates, local coordinates, cell) of old point x

Termination criteria:

- grid boundary reached
- step count limit reached
- optional: velocity close to zero
- optional: time limit reached
- optional: arc length limit reached

Integration step: widely used integration methods:

• Euler (used only in special speed-optimized techniques, e.g. GPU-based texture advection)

$$\mathbf{x}_{new} = \mathbf{x} + \mathbf{v}(\mathbf{x}, t) \cdot \Delta t$$

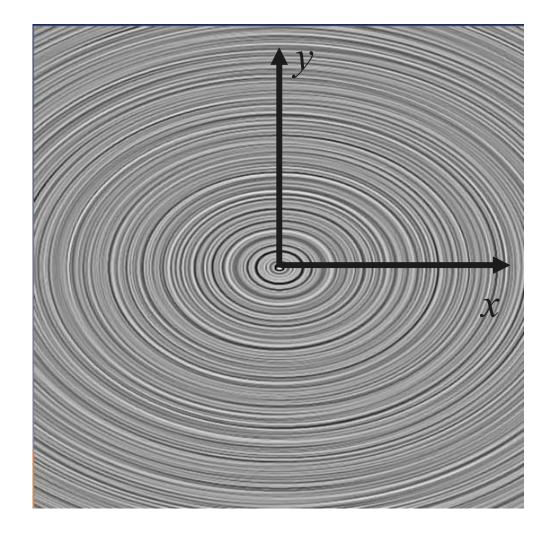
• Runge-Kutta, 2nd or 4th order

Higher order than 4th?

- often too slow for visualization
- study (Yeung/Pope 1987) shows that, when using standard trilinear interpolation, interpolation errors dominate integration errors.

Numerical Integration

- Numerical integration of stream lines:
- approximate streamline by polygon **x**_i
- Testing example:
 - $\mathbf{v}(x,y) = (-y, x/2)^{T}$
 - exact solution: ellipses
 - starting integration from (0,-1)



Streamlines – Practice

Basic approach:

- theory: $\mathbf{s}(t) = \mathbf{s}_0 + \int_{0 \le u \le t} \mathbf{v}(\mathbf{s}(u)) du$
- practice: numerical integration

• idea:

(very) locally, the solution is (approx.) linear

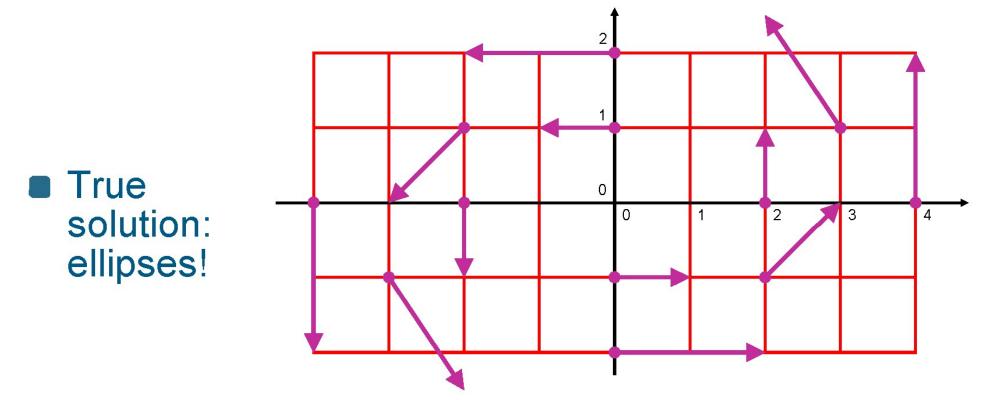
- Euler integration: follow the current flow vector v(s_i) from the current streamline point s_i for a very small time (dt) and therefore distance
- Euler integration: $\mathbf{s}_{i+1} = \mathbf{s}_i + dt \cdot \mathbf{v}(\mathbf{s}_i)$, integration of small steps (dt very small)

4

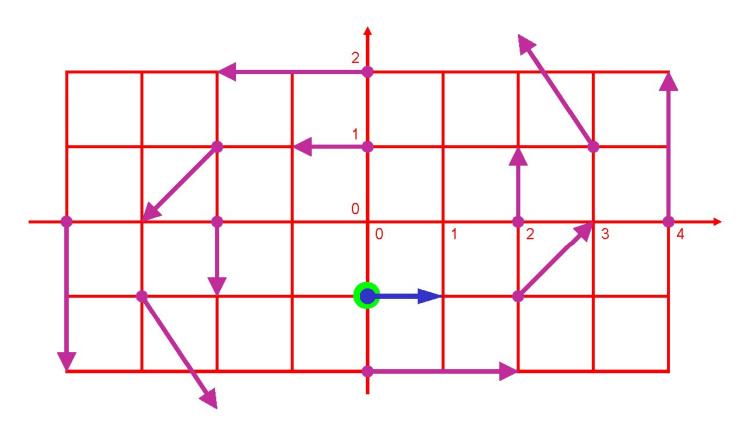
2D model data:

 $v_x = dx/dt = -y$ $v_y = dy/dt = x/2$

Sample arrows:

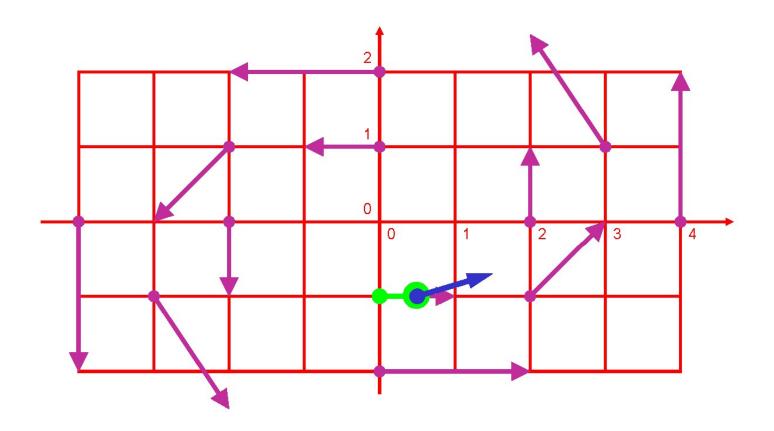


• Seed point $\mathbf{s}_0 = (0|-1)^T$; current flow vector $\mathbf{v}(\mathbf{s}_0) = (1|0)^T$; dt = 1/2



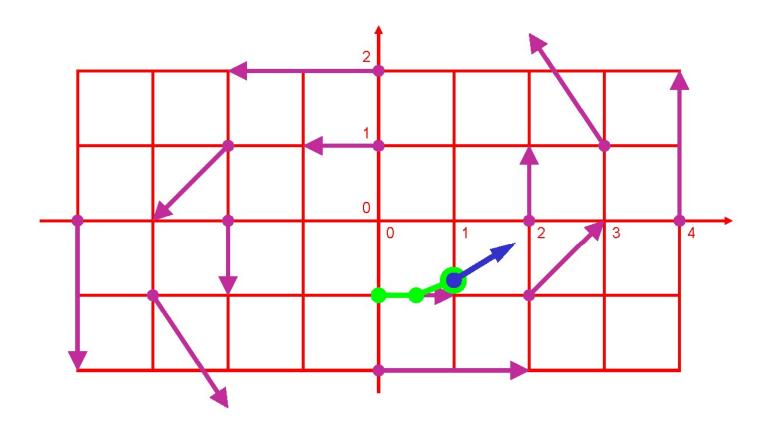
4

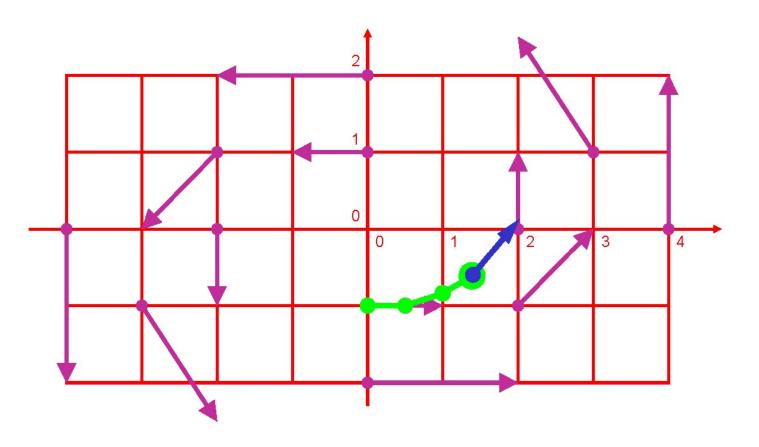
• New point $\mathbf{s}_1 = \mathbf{s}_0 + \mathbf{v}(\mathbf{s}_0) \cdot dt = (1/2|-1)^T$; current flow vector $\mathbf{v}(\mathbf{s}_1) = (1|1/4)^T$;

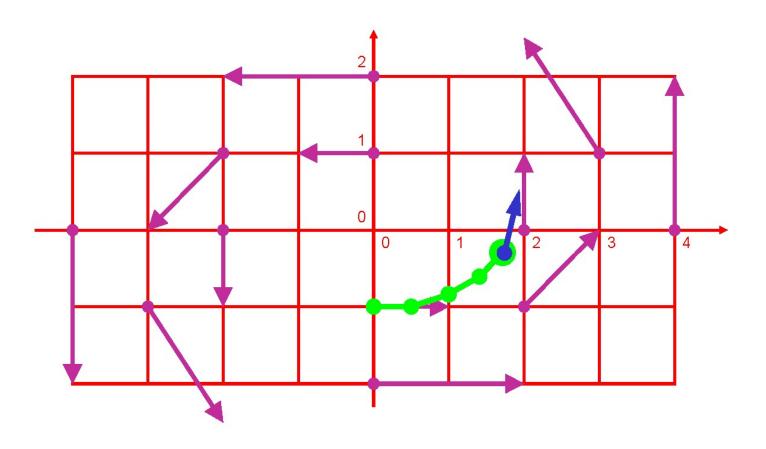


4

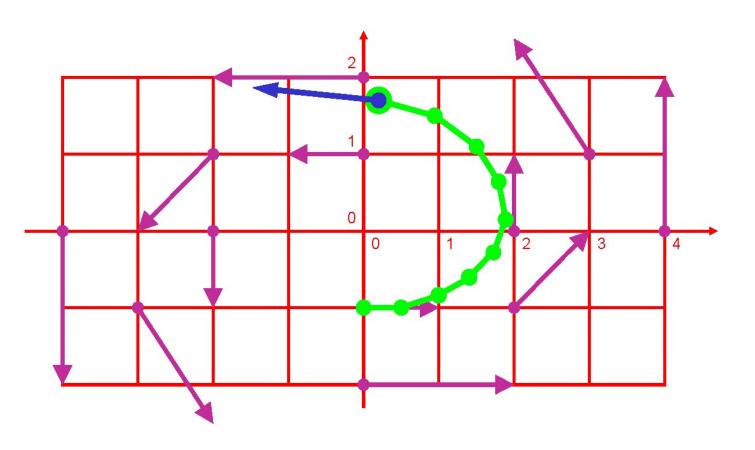
• New point $\mathbf{s}_2 = \mathbf{s}_1 + \mathbf{v}(\mathbf{s}_1) \cdot dt = (1|-7/8)^T$; current flow vector $\mathbf{v}(\mathbf{s}_2) = (7/8|1/2)^T$;





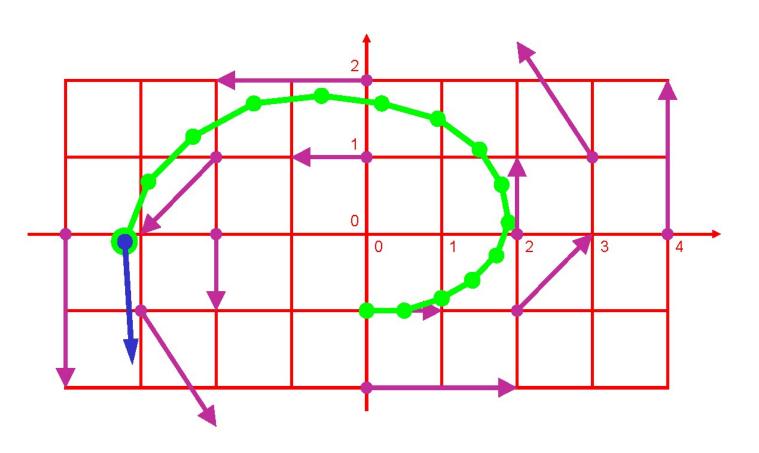


■ $\mathbf{s}_9 \approx (0.20 | 1.69)^T;$ $\mathbf{v}(\mathbf{s}_9) \approx (-1.69 | 0.10)^T;$



L.

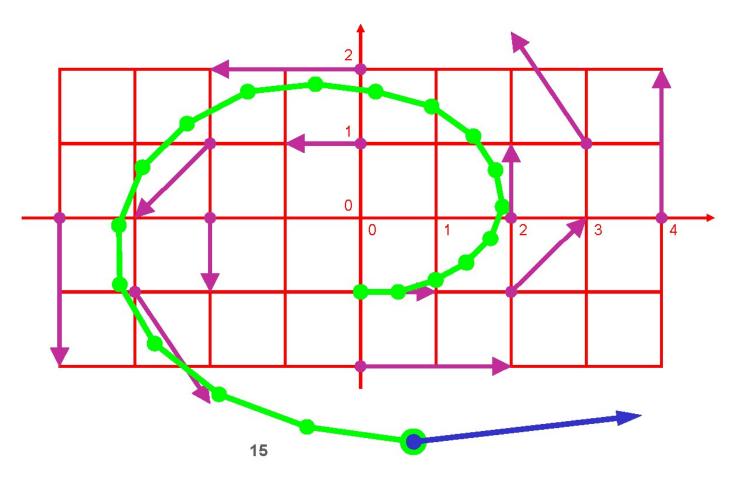
■ s_{14} ≈ $(-3.22|-0.10)^{T}$; v(s_{14}) ≈ $(0.10|-1.61)^{T}$;



L.

4

■ $s_{19} \approx (0.75 | -3.02)^T$; $v(s_{19}) \approx (3.02 | 0.37)^T$; clearly: large integration error, d*t* too large! 19 steps

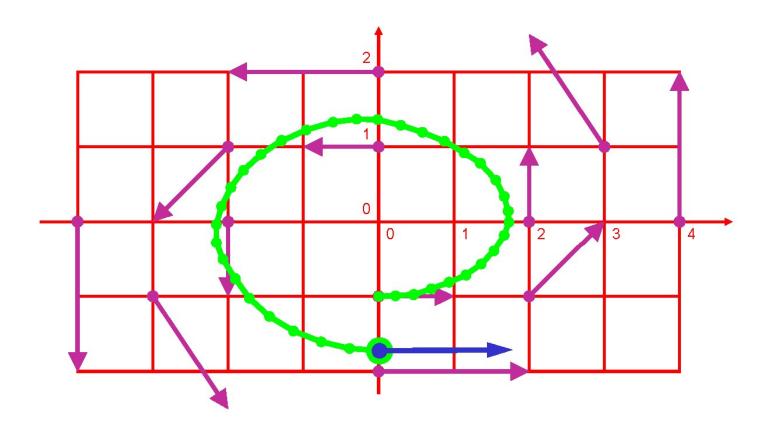


Helwig Hauser

4

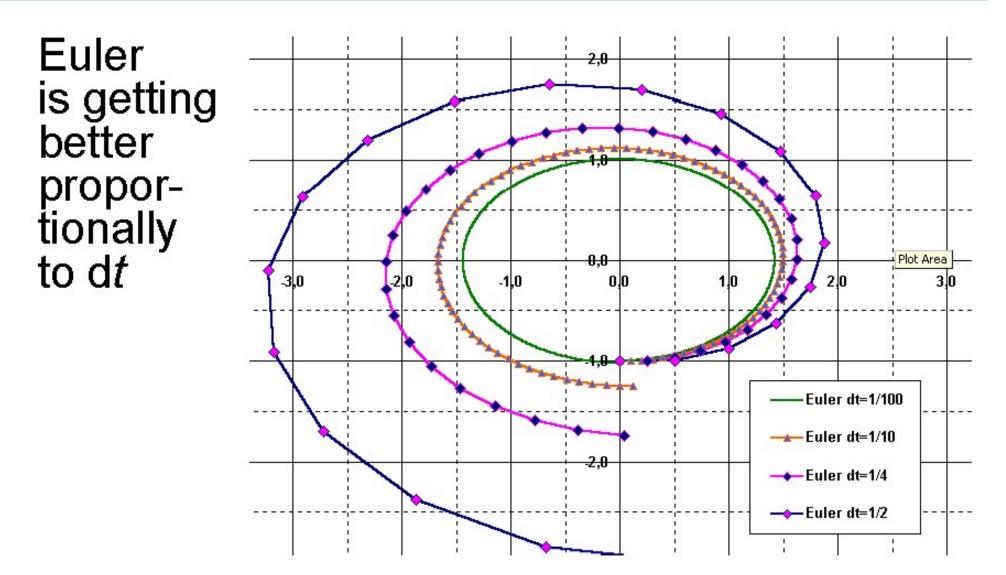
• dt smaller (1/4): more steps, more exact! $s_{36} \approx (0.04 | -1.74)^{T}; v(s_{36}) \approx (1.74 | 0.02)^{T};$

36 steps



κ.

Comparison Euler, Step Sizes



×.

4

Better than Euler Integr.: RK

Runge-Kutta Approach:

- theory: $\mathbf{s}(t) = \mathbf{s}_0 + \int_{0 \le u \le t} \mathbf{v}(\mathbf{s}(u)) du$
- Euler: $\mathbf{s}_i = \mathbf{s}_0 + \sum_{0 \le u \le i} \mathbf{v}(\mathbf{s}_u) \cdot dt$

Runge-Kutta integration:

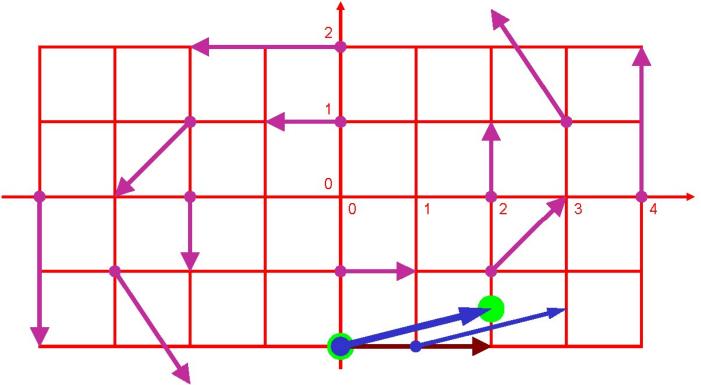
idea: cut short the curve arc

- RK-2 (second order RK): 1.: do half a Euler step
 - 2.: evaluate flow vector there
 - 3.: use it in the origin
- RK-2 (two evaluations of v per step): $\mathbf{s}_{i+1} = \mathbf{s}_i + \mathbf{v}(\mathbf{s}_i + \mathbf{v}(\mathbf{s}_i) \cdot dt/2) \cdot dt$

RK-2 Integration – One Step

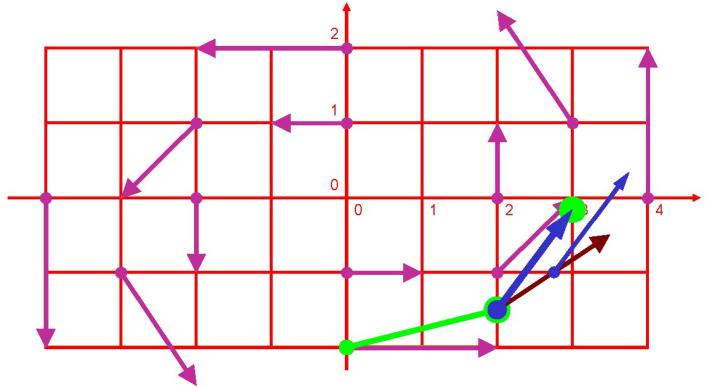
4

• Seed point $\mathbf{s}_0 = (0|-2)^T$; current flow vector $\mathbf{v}(\mathbf{s}_0) = (2|0)^T$; preview vector $\mathbf{v}(\mathbf{s}_0+\mathbf{v}(\mathbf{s}_0)\cdot dt/2) = (2|0.5)^T$; dt = 1



RK-2 – One more step

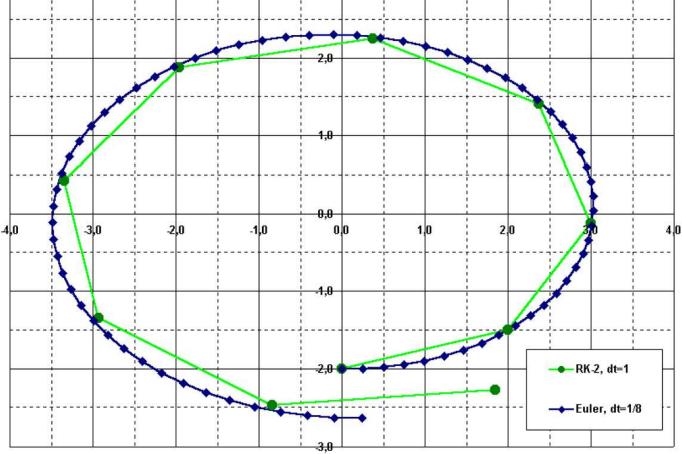
Seed point $\mathbf{s}_1 = (2|-1.5)^T$; current flow vector $\mathbf{v}(\mathbf{s}_1) = (1.5|1)^T$; preview vector $\mathbf{v}(\mathbf{s}_1 + \mathbf{v}(\mathbf{s}_1) \cdot dt/2) \approx (1|1.4)^T$; dt = 1



4

RK-2 – A Quick Round

RK-2: even with dt=1 (9 steps) better than Euler with dt=1/8(72 steps)



RK-4 vs. Euler, RK-2

Even better: fourth order RK:

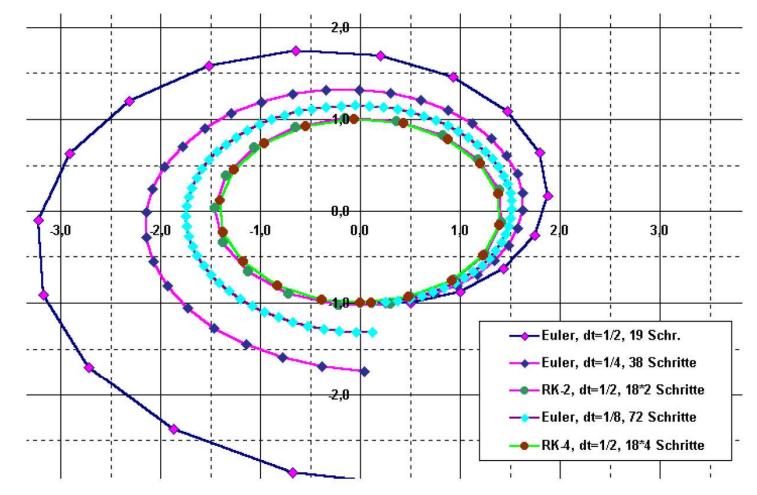
- four vectors a, b, c, d
- one step is a convex combination: $s_{i+1} = s_i + (a + 2 \cdot b + 2 \cdot c + d)/6$
- vectors:
 - $\mathbf{a} = dt \cdot \mathbf{v}(\mathbf{s}_i)$
 - **b** = dt· $\mathbf{v}(\mathbf{s}_i + \mathbf{a}/2)$... RK-2 vector
 - **c** = dt·**v**(**s**_{*i*}+**b**/2) ... use RK-2 ...
 - $\bullet \mathbf{d} = \mathrm{d}t \cdot \mathbf{v}(\mathbf{s}_i + \mathbf{c}) \qquad \dots \text{ and again}!$

- ... original vector

Euler vs. Runge-Kutta

RK-4: pays off only with complex flows

Here approx. like RK-2



Integration, Conclusions

Summary:

- analytic determination of streamlines usually not possible
- hence: numerical integration
- several methods available (Euler, Runge-Kutta, etc.)
- Euler: simple, imprecise, esp. with small dt
- RK: more accurate in higher orders
- furthermore: adaptive methods, implicit methods, etc.

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama