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CS 247 - Scientific Visualization
Lecture 23: Vector / Flow Visualization, Pt. 2

Markus Hadwiger, KAUST




Reading Assignment #13 (until May 4)

Read (required):

« Data Visualization book
— Chapter 6.1 (Divergence and Vorticity)
— Chapter 6.6 (Texture-Based Vector Visualization)

 Diffeomorphisms / smooth deformations
https://en.wikipedia.org/wiki/Diffeomorphism

 Learn how convolution (the convolution of two functions) works:
https://en.wikipedia.org/wiki/Convolution

 B. Cabral, C. Leedom:
Imaging Vector Fields Using Line Integral Convolution, SIGGRAPH

1993
http://dx.doi.org/10.1145/166117.166151



Vector / Flow Visualization




Online Demos and Info

Numerical ODE integration methods (Euler vs. Runge Kutta, etc.)

https://demonstrations.wolfram.com/
NumericalMethodsForDifferentialEquations/

Flow visualization concepts

https://www3.nd.edu/~cwang11/flowvis.html

Markus Hadwiger, KAUST 4



Vector Fields: Motivation




http://de.wikipedia.org/wiki/Bild:Airplane_vortex_edit.jpg
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Feature-Based Visualization and Analysis

e Vortex/ Vortex core lines
e There is no exact definition of vortices

e capturing some swirling behavior

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Vector Fields

Each vector is usually thought of as a velocity vector

« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)

Eulerian specification:
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vectors given at grid points
(grid points do not move)

Lagrangian specification:
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vectors given at particle positions
(particle positions do move)
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Each vector is usually thought of as a velocity vector
« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)
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Integral Curves / Stream Objects




ld Example (1)
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Inviscid, incompressible flow that is irrotational (curl-free) and can be modeled as the gradient
of a scalar function called the (scalar) velocity potential




Flow Field Example (2)

Depending on Reynolds number, turbulence will develop

Example: von Karman vortex street: vortex shedding

https://en.wikipedia.org/wiki/Karman vortex street

images from wikipedia



Vector Fields

Each vector is usually thought of as a velocity vector
« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)

Each vector in a vector field
lives in the tangent space
of the manifold at that point:

Each vector is a tangent vector

m

image from wikipedia



Vector Fields

Vector fields on general manifolds M (not just Euclidean space)

Tangent space at a point x € M : M

M

Tangent bundle: Manifold of all tangent spaces
over base manifold

w:TM—M

Vector field: Section of tangent bundle

y(?)

s: M —TM,
x> §(x). T (s(x)) =x

Markus Hadwiger, KAUST image from wikipedia



Vector Fields

Vector fields on general manifolds M (not just Euclidean space)

Tangent space at a point x € M : M
M

Tangent bundle: Manifold of all tangent spaces
over base manifold

w:TM—M

Vector field: Section of tangent bundle

vVi:M—TM,
X v(x). v(x) e TM

Markus Hadwiger, KAUST image from wikipedia



Vector fields

A static vector field v (x) IS a vector-valued function of space.
A time-dependent vector field v(x,t) depends also on time.

In the case of velocity fields, the terms steady and unsteady flow
are used.

The dimensions of x and v are equal, often 2 or 3, and we denote
components by x,y,z and u, v, w.

x=(x,y,z), v=(u,v,w)

Sometimes a vector field is defined on a surface x(/,j) . The
vector field is then a function of parameters and time:

v(i,jt)

Ronald Peikert SciVis 2009 - Vector Fields 5-2



Steady vs. Unsteady Flow

« Steady flow: time-independent
- Flow itself is static over time:  v(X) v: R" — R",

« Example: laminar flows X = v(x).
* Unsteady flow: time-dependent
* Flow itself changes over time:  v(x,7) v: R" xR — R",

« Example: turbulent flows (x,2) = v(x,1).

(here just for Euclidean domain; analogous on general manifolds)

Markus Hadwiger, KAUST 17



Steady vs. Unsteady Flow

« Steady flow: time-independent
- Flow itself is static over time:  v(X) v: M - R",

« Example: laminar flows X = v(x).
* Unsteady flow: time-dependent
* Flow itself changes over time:  v(x,7) v: M xR — R",

« Example: turbulent flows (x,2) = v(x,1).

(here now for general manifolds)

Markus Hadwiger, KAUST 18



Direct vs. Indirect Flow Visualization

 Direct flow visualization
* Overview of current flow state

* Visualization of vectors: arrow plots (*hedgehog” plots)

* Indirect flow visualization
» Use intermediate representation: vector field integration over time
* Visualization of temporal evolution
* Integral curves: streamlines, pathlines, streaklines, timelines

* Integral surfaces: streamsurfaces, pathsurfaces, streaksurfaces

Markus Hadwiger, KAUST 19



Direct vs. Indirect Flow Visualization




Integral Curves: Intro




Integral Curves / Stream Objects




Particle Trajectories

Courtesy Jens Kruger
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Particle Trajectories
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Particle Trajectories
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Particle Trajectories

Courtesy Jens Kruger
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Integral Curves

Streamlines Pathlines Streaklines

Particle trajectory Particle trajectory Trace of particles
at fixed time step in unsteady flow released into flow
at fixed position




Streamline

e Curve parallel to the vector field in each point for a fixed time

Pathline

e Describes motion of a massless particle over time

Streakline

e Location of all particles released at a fixed position over time

Timeline

e Location of all particles released along a line at a fixed time

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



stream lines

path lines

streak lines

time lines




Streamlines, pathlines, streaklines, timelines

Comparison of techniques:

(1) Pathlines:

« are physically meaningful

« allow comparison with experiment (observe marked particles)
« are well suited for dynamic visualization (of particles)

(2) Streamlines:
« are only geometrically, not physically meaningful

« are easiest to compute (no temporal interpolation, single IVP)
« are better suited for static visualization (prints)
« don't intersect (under reasonable assumptions)

Ronald Peikert SciVis 2009 - Vector Fields 5-13



Streamlines, pathlines, streaklines, timelines

(3) Streaklines:

are physically meaningful

allow comparison with experiment (dye injection)

are well suited for static and dynamic visualization
good choice for fast moving vortices

can be approximated by set of disconnected particles

(4) Timelines:

are physically meaningful
are well suited for static and dynamic visualization
can be approximated by set of disconnected particles

Ronald Peikert SciVis 2009 - Vector Fields

5-14



2D time-dependent vector field
particle visualization

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



stream lines

curve parallel to the vector field in
each point for a fixed time

describes motion of a massless
particle in an steady flow field

path lines

curve parallel to the vector field in
each point over time

describes motion of a massless
particle in an unsteady flow field

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector
fields (unsteady flow)

Markus Hadwiger, KAUST Tino Weinkauf 5,
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Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

« Tangent curves to a (n + 1)-dimensional vector field

Stream Lines Path Lines

Markus Hadwiger, KAUST 35



Vector fields as ODESs

For simplicity, the vector field is now interpreted as a velocity field.

Then the field v(x,t) describes the connection between location and
velocity of a (massless) particle.

It can equivalently be expressed as an ordinary differential equation

X(t) :v(x(t),t)

This ODE, together with an initial condition

X(to) = XO )
IS a so-called initial value problem (IVP).

Its solution is the integral curve (or trajectory)

x+j dr

Ronald Peikert SciVis 2009 - Vector Fields 5-6



Vector fields as ODEs

The integral curve is a pathline, describing the path of a massless
particle which was released at time ¢, at position x,,.

Remark: t <{,Is allowed.
For static fields, the ODE is autonomous:

K(t)=v(x(1)

and its integral curves

t

x(t) =X, +Iv(x(r))dr

fo

are called field lines, or (in the case of velocity fields)
streamlines.

Ronald Peikert SciVis 2009 - Vector Fields
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Vector fields as ODEs
In static vector fields, pathlines and streamlines are identical.

In time-dependent vector fields, instantaneous streamlines can be
computed from a "snapshot" at a fixed time T (which is a static
vector field)

v, (x)=v(x,T)

In practice, time-dependent fields are often given as a dataset per
time step. Each dataset is then a snapshot.

Ronald Peikert SciVis 2009 - Vector Fields 5-8



Streamline integration

Outline of algorithm for numerical streamline integration
(with obvious extension to pathlines):

Inputs:

- static vector field V(X)

- seed points with time of release (X,, t,)

« control parameters:
— step size (temporal, spatial, or in local coordinates)
— step count limit, time limit, etc.
— order of integration scheme

Output:

« streamlines as "polylines", with possible attributes
(interpolated field values, time, speed, arc length, etc.)

Ronald Peikert SciVis 2009 - Vector Fields 5-21



Streamline integration

Preprocessing:
« set up search structure for point location
 for each seed point:

— global point location: Given a point X,
find the cell containing x and the local coordinates (&,7,¢)
or ir the grid is structured:
find the computational space coordinates (i + &, j+1, k+¢)

— If x is not found in a cell, remove seed point

Ronald Peikert SciVis 2009 - Vector Fields 5-22



Streamline integration

Integration loop, for each seed point x:
 Interpolate v trilinearly to local coordinates (5 G )
« do an integration step, producing a new point x'

* incremental point location: For position x' find cell and local
coordinates (¢',77',¢") making use of information
(coordinates, local coordinates, cell) of old point x

Termination criteria:

« grid boundary reached

« step count limit reached

« optional: velocity close to zero

« optional: time limit reached

« optional: arc length limit reached

Ronald Peikert SciVis 2009 - Vector Fields 5-23



Streamline integration

Integration step: widely used integration methods:
» Euler (used only in special speed-optimized techniques, e.g.
GPU-based texture advection)

X,., = X+V(X,t)at

ne

« Runge-Kutta, 2™ or 4t order

Higher order than 4th?
« often too slow for visualization

« study (Yeung/Pope 1987) shows that, when using standard
trilinear interpolation, interpolation errors dominate integration
errors.

Ronald Peikert SciVis 2009 - Vector Fields 5-24
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