
CS 247 – Scientific Visualization
Lecture 21: Volume Visualization, Pt. 8

Markus Hadwiger, KAUST

2

Reading Assignment #12 (until Apr 27)

Read (required):

• Data Visualization book

– Chapter 6 (Vector Visualization)

– Beginning (before 6.1)

– Chapters 6.2, 6.3, 6.5

• More general vector field basics (the book is not very precise on the basics)

https://en.wikipedia.org/wiki/Vector_field

Read (optional):

• Paper:
Bruno Jobard and Wilfrid Lefer
Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498

Volume RenderingVolume Rendering

ImplementationImplementation

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 5

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 6

Ray Setup

Two main approaches:

• Procedural ray/box intersection
[Röttger et al., 2003], [Green, 2004]

• Rasterize bounding box
[Krüger and Westermann, 2003]

Some possibilities

• Ray start position and exit check

• Ray start position and exit position

• Ray start position and direction vector

7

Procedural Ray Setup/Termination

• Everything handled in the fragment shader / CUDA kernel

• Procedural ray / bounding box intersection

• Ray is given by camera position
and volume entry position

• Exit criterion needed

• Pro: simple and self-contained

• Con: full computational load
per-pixel/fragment

8

Rasterization-Based Ray Setup

• Fragment == ray

• Need ray start pos, direction vector

• Rasterize bounding box

• Identical for orthogonal and perspective projection!

- =

9

Object-Order Empty Space Skipping

Modify initial rasterization step

rasterize bounding box rasterize “tight" bounding geometry

Moving Into The Volume

Near clipping plane clips into front faces

Fill in holes with near clipping plane

Can use depth buffer [Scharsach et al., 2006]

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 12

Classification – Transfer Functions

During Classification the user defines the “look“ of the data.

• Which parts are transparent?

• Which parts have what color?

Classification – Transfer Functions

During Classification the user defines the “look“ of the data.

• Which parts are transparent?

• Which parts have what color?

The user defines a transfer function.

Emission RGB

Absorption A
scalar S Transfer

Function

1D Transfer Functions

texture = scalar field

transferfunction texture = [Emission RGB, Absorption A]

scalar value S

S

RGBA

T(S)
resampling

1D Transfer Functions

Applying Transfer Function: Cg Example

// Cg fragment program for post-classification

// using 3D textures

float4 main (float3 texUV : TEXCOORD0,

uniform sampler3D volume_texture,

uniform sampler1D transfer_function) :
COLOR

{

float index = tex3D(volume_texture, texUV);

float4 result = tex1D(transfer_function, index);

return result;

}

Windowing Transfer Function

Map input scalar range to output intensity range

• Select scalar range of interest

• Adjust contrast

Markus Hadwiger, KAUST 18

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 19

Volume Shading

Local illumination vs. global illumination
• Gradient-based or gradient-less
• Shadows, (multiple) scattering, …

Local Illumination Model: Phong Lighting Model

On-the-fly Gradient Estimation

On-The-Fly Gradients

Reduce texture memory consumption!

Central differences before and after linear interpolation
of values at grid points yield the same results

Caveat: texture filter precision

Filter kernel methods are expensive, but:

Tri-cubic B-spline kernels can be used in real-time
(e.g., GPU Gems 2 Chapter “Fast Third-Order Filtering”)

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 24

Compositing

Compositing

Fragment Shader

• Rasterize front faces
of volume bounding box

• Texcoords are volume
position in [0,1]

• Subtract camera position

• Repeatedly check for
exit of bounding box

CUDA Kernel

• Image-based ray
setup

– Ray start image

– Direction image

• Ray-cast loop

– Sample volume

– Accumulate
color and opacity

• Terminate

• Store output

28

Isosurface Ray-CastingIsosurface Ray-Casting

Isosurface Ray-Casting

Isosurfaces/Level Sets

• Scanned data (fit signed distance function to points, ...)

• Signed distance fields

• CSG (constructive solid geometry) operations

• level sets: surface editing, simulation, segmentation, …

Opaque isosurfaces:
only one sample contributes per ray/pixel

Discard all samples except first
hit on isosurface / object boundary

Threshold transfer function / alpha test

First hit ray casting

f(x) >= fiso

f(x) < fiso

densityfiso

Isosurface Ray-Casting

Intersection Refinement (1)

Fixed number of bisection / binary search steps

Virtually no impact on performance

Refine already detected
intersection

Handle problems with small
features / at silhouettes with
adaptive sampling

Intersection Refinement (2)

sampling distance 5 voxels (no adaptive sampling)

without refinement with refinement

Ray-Casting vs. Isosurface Ray-Casting

Ray setup

Loop over ray

Sample scalar field

Classification

Shading

Compositing

Markus Hadwiger, KAUST 34

Ray setup

Loop over ray

Sample scalar field

if value >= isoValue (i.e., first hit)

break out of the loop

[Refine first hit location] (optional)

Shading

(Compositing not needed)

Ray-Casting Isosurface Ray-Casting

Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

