
CS 247 – Scientific Visualization
Lecture 16: Volume Visualization, Pt. 3

Markus Hadwiger, KAUST

2

Reading Assignment #9 (until Apr 6)

Read (required):

• Real-Time Volume Graphics, Chapter 4 (Transfer Functions)
until Sec. 4.4 (inclusive)

• Paper:

Jens Krüger and Rüdiger Westermann,
Acceleration Techniques for GPU-based Volume Rendering,
IEEE Visualization 2003,
http://dl.acm.org/citation.cfm?id=1081482

3

Quiz #2: Apr 9

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assignments (except optional ones)

• Programming assignments (algorithms, methods)

• Solve short practical examples

Volume RenderingVolume Rendering

TheoryTheory

Optical Models: Physical Model gives ODE

Optical Models for Direct Volume Rendering, Nelson Max

Emission-Absorption optical model

Right-hand side: Rates of change (derivatives) of light intensity along ray

Absorption rate is proportional to light intensity: Solution is exponential

Markus Hadwiger, KAUST 6

viewing ray

Volume Rendering Integral

Volume rendering integral
for Emission Absorption model

Iterative/recursive numerical solutions:

true emission true absorption

Back-to-front compositing Front-to-back compositing

here, all colors are associated colors!

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Initial intensity
at s0

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Initial intensity
at s0

Without absorption all
the initial radiant energy
would reach the point s.

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray
Absorption along the

ray segment s0 - s

Optical depth τ
Absorption к

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Active emission
at point s~

One point along the
viewing ray emits additional
radiant energy.

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Every point along the
viewing ray emits additional
radiant energy

Volume Rendering Integral: Numerical Solution

Optical depth:

Volume Rendering Integral: Numerical Solution

Optical depth:

Approximate Riemann integral by Riemann sum:

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Now we introduce opacity:

Volume Rendering Integral: Numerical Solution

Now we introduce opacity:

Volume Rendering Integral: Numerical Solution

Now we introduce opacity:

Volume Rendering Integral: Numerical Solution

Now we introduce opacity:

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

Volume Rendering Integral: Numerical Solution

can be computed iteratively/recursively!

Radiant energy
observed at position i

Radiant energy
emitted at position i

Radiant energy
observed at position i–1

Absorption at
position i

Volume Rendering Integral: Numerical Solution

can be computed iteratively/recursively:

Note: we just changed the convention from i=0 is at the front of
the volume (previous slides) to i=0 is at the back of the volume !

Back-to-front
compositing

Front-to-back
compositing

Volume Rendering Integral: Numerical Solution

iterate from i=0 (back) to i=max (front): i increases

iterate from i=max (front) to i=0 (back) : i decreases

Back-to-front
compositing

Front-to-back
compositing

Volume Rendering Integral: Numerical Solution

iterate from i=0 (back) to i=max (front): i increases

iterate from i=max (front) to i=0 (back) : i decreases

Early Ray Termination:
Stop the calculation when

Volume Rendering Integral

Volume rendering integral
for Emission Absorption model

Iterative/recursive numerical solutions:

true emission true absorption

Back-to-front compositing Front-to-back compositing

here, all colors are associated colors!

ImplementationImplementation

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 34

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 35

Ray Setup

Two main approaches:

• Procedural ray/box intersection
[Röttger et al., 2003], [Green, 2004]

• Rasterize bounding box
[Krüger and Westermann, 2003]

Some possibilities

• Ray start position and exit check

• Ray start position and exit position

• Ray start position and direction vector

36

Procedural Ray Setup/Termination

• Everything handled in the fragment shader / CUDA kernel

• Procedural ray / bounding box intersection

• Ray is given by camera position
and volume entry position

• Exit criterion needed

• Pro: simple and self-contained

• Con: full computational load
per-pixel/fragment

37

Rasterization-Based Ray Setup

• Fragment == ray

• Need ray start pos, direction vector

• Rasterize bounding box

• Identical for orthogonal and perspective projection!

- =

38

Object-Order Empty Space Skipping

Modify initial rasterization step

rasterize bounding box rasterize “tight" bounding geometry

Moving Into The Volume

Near clipping plane clips into front faces

Fill in holes with near clipping plane

Can use depth buffer [Scharsach et al., 2006]

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 41

Classification – Transfer Functions

During Classification the user defines the “look“ of the data.

• Which parts are transparent?

• Which parts have what color?

Classification – Transfer Functions

During Classification the user defines the “look“ of the data.

• Which parts are transparent?

• Which parts have what color?

The user defines a transfer function.

Emission RGB

Absorption A
scalar S Transfer

Function

1D Transfer Functions

texture = scalar field

transferfunction texture = [Emission RGB, Absorption A]

scalar value S

S

RGBA

T(S)
resampling

1D Transfer Functions

Applying Transfer Function: Cg Example

// Cg fragment program for post-classification

// using 3D textures

float4 main (float3 texUV : TEXCOORD0,

uniform sampler3D volume_texture,

uniform sampler1D transfer_function) :
COLOR

{

float index = tex3D(volume_texture, texUV);

float4 result = tex1D(transfer_function, index);

return result;

}

Windowing Transfer Function

Map input scalar range to output intensity range

• Select scalar range of interest

• Adjust contrast

Markus Hadwiger, KAUST 47

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 48

Volume Shading

Local illumination vs. global illumination
• Gradient-based or gradient-less
• Shadows, (multiple) scattering, …

Local Illumination Model: Phong Lighting Model

On-the-fly Gradient Estimation

On-The-Fly Gradients

Reduce texture memory consumption!

Central differences before and after linear interpolation
of values at grid points yield the same results

Caveat: texture filter precision

Filter kernel methods are expensive, but:

Tri-cubic B-spline kernels can be used in real-time
(e.g., GPU Gems 2 Chapter “Fast Third-Order Filtering”)

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 53

Compositing

Compositing

Fragment Shader

• Rasterize front faces
of volume bounding box

• Texcoords are volume
position in [0,1]

• Subtract camera position

• Repeatedly check for
exit of bounding box

CUDA Kernel

• Image-based ray
setup

– Ray start image

– Direction image

• Ray-cast loop

– Sample volume

– Accumulate
color and opacity

• Terminate

• Store output

57

Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

