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CS 247 - Scientific Visualization
Lecture 13: Scalar Field Visualization, Pt. 6
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Reading Assignment #8 (until Mar 23)

Read (required):

« Real-Time Volume Graphics, Chapter 1
(Theoretical Background and Basic Approaches),
from beginning to 1.4.4 (inclusive)

Read (optional):

» Paper:
Nelson Max, Optical Models for Direct Volume Rendering,

IEEE Transactions on Visualization and Computer Graphics, 1995
http://dx.doi.org/10.1109/2945.468400



The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

of of Of\ "

g _ vf _ (only correct in Cartesian
— p— ’ ’ coordinates: see later)
Ox Oy 0z
Local approximation to isosurface at any point: smaller
tangent plane = plane orthogonal to gradient scalar

-8 values

Normal of this isosurface:
normalized gradient vector
(negation is common convention)

n=-g/lg|

larger
scalar
values



(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences
« Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid

 Image processing filters; e.g. Sobel (33 neighbors in 3D) — o o
© o o0 o

Continuous convolution filters ® .e oo
* Derived continuous reconstruction filters —Q0—O0—0—0-

* E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

/4 !/
fleo+h) = fleo) + L0 o LIy
= > ——h".
n=0
Forward differences / backward differences
f(x()), _ f(x() + h) o f(xO) _l_O(h)

h
f(xo) — f(xo — h)
’ + o(h)
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Finite Differences

Central differences

f(iCo-I—h) f,(xﬂ) h + f”(IO) h2 —|—0(h3)

I
=
X
<
_|_
=

! 2!
feo—h) = flao) — L8 p ¢ L0 p2 o
iy J@o+h)— flzo—h)
f(2o) = o7 +o(h?)
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Central Differences

Need only two neighboring voxels per derivative

Most common method (x, y+1, 2)

on a curve f(x, vy, z+1)
f(x-1, v, z) f(x+1, v, 7)
f(x, vy, z-1)
f(Xa Y'la Z)
g, = 0.5( £(x+1, v, z) - £(x-1, v, z) )
= 0.5( £ , +1, - f , -1, .
. CrOooysdom = 2o ¥yt 2 ) 6 a volume

0.5( £(x, v, z+1) - £(x, v, z-1) )

Q
N
]



Gradients as Differential Forms

(1-Forms)




The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

df = aﬁ dx 1 a;c ady+ aJZC

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms d f,dx,dy,dz takes direction vector as input, gives scalar output

In the expression of the gradient 4 above, all 1-forms on the right-hand side get
the same vector as input

df is simply a linear combination of the coordinate differentials dx,dy,dz
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

af df f
d d d
/= Jx R B dy YT o2 az
The directional derivative and the gradient vector

Dyf =df(u)
df(u)=Vf-u

The gradient vector is then defined, such that:
Vf-u:=df(u)
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