
CS 247 – Scientific Visualization
Lecture 12: Scalar Field Visualization, Pt. 5
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Reading Assignment #7 (until Mar 16)

Read (required):

• Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read -
5.4)
(Local Volume Illumination)

Look at (optional):

• Riemannian Geometry for Scientific Visualization (notes and videos [part 1])
https://vccvisualization.org/RiemannianGeometryTutorial/
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Iso-Surface / Volume
Illumination

Iso-Surface / Volume
Illumination



What About Volume Illumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!



Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual



Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only 
interested in points on the surface;
in marching cubes: the vertices)





Local Illumination Model: Phong Lighting Model



Local Illumination Model: Phong Lighting Model



Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?
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specular reflectiondiffuse reflection



Local Illumination Model: Phong Lighting Model



Local Illumination Model: Phong Lighting Model



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

Many uses:

• Project vector onto another vector

• Project into basis (using the dual basis, see later)

• Project into tangent plane
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(standard inner product
in Cartesian coordinates)

(geometric definition,
independent of coordinates)



Local Illumination Model: Phong Lighting Model

must also clamp!



Local Illumination Model: Phong Lighting Model

half-way vector

must also clamp!



Gradient of the scalar field gives direction+magnitude of fastest change

Local approximation to isosurface at any point:
tangent plane = plane orthogonal to gradient

Normal of this isosurface:
normalized gradient vector
(negation is common convention)

-g

larger
scalar 
values

smaller
scalar 
values

The Gradient as Normal Vector

(only correct in Cartesian
coordinates: see later)



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

Many uses:

• Project vector onto another vector

• Project into basis (using the dual basis, see later)

• Project into tangent plane
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(standard inner product
in Cartesian coordinates)

(geometric definition,
independent of coordinates)



Gradient and Directional Derivative

Gradient        s        of scalar function                :

Directional derivative in direction    :

And therefore also:
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(only correct in Cartesian
coordinates: see later)



Gradient and Directional Derivative

Gradient        s        of scalar function                :

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:
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(only correct in Cartesian
coordinates: see later)



(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences

• Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid

• Image processing filters; e.g. Sobel (33 neighbors in 3D)

Continuous convolution filters

• Derived continuous reconstruction filters

• E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

Forward differences / backward differences
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Finite Differences

Central differences
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Central Differences

Need only two neighboring voxels per derivative

Most common method

gx = 0.5( f(x+1, y, z) – f(x-1, y, z) )

gy = 0.5( f(x, y+1, z) – f(x, y-1, z) )

gz = 0.5( f(x, y, z+1) – f(x, y, z-1) )

f(x-1, y, z) f(x+1, y, z)

f(x, y+1, z)

f(x, y-1, z)

f(x, y, z+1)

f(x, y, z-1)

on a curve 

in a volume



Thank you.

Thanks for material
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