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CS 247 - Scientific Visualization
Lecture 12: Scalar Field Visualization, Pt. 5

Markus Hadwiger, KAUST




Reading Assignment #7 (until Mar 16)

Read (required):

» Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read -
5.4)

(Local Volume lllumination)

Look at (optional):

» Riemannian Geometry for Scientific Visualization (notes and videos [part 1])

https://vccvisualization.org/RiemannianGeometryTutorial/



The marching cubes algorithm
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The marching cubes algorithm

case 12
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The marching cubes algorithm

Do the pieces fit together?

* The correct isosurfaces of the trilinear
interpolant would fit (trilinear reduces to
bilinear on the cell interfaces)

« but the marching cubes polygons don't
necessarily fit.

Example
« case 10, on top of
« case 3 (rotated, signs changed)

have matching signs at nodes but polygons
don't fit.
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The marching cubes algorithm
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The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:
 build a table of the 28 cases
« derive a table of the 256 cases, containing info on

— intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0,2), (0,4), (1,3), (1,5)
— triangles based on these points, e.g. for case 3/256:

(0,2,1), (1,3,2).
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The marching cubes algorithm

Loop over cells:
- find sign of f(x;) for the 8 corner nodes, giving 8-bit integer
* use as index into (256 case) table

 find intersection points on edges listed in table, using linear
iInterpolation

* generate triangles according to table

Post-processing steps:

« connect triangles (share vertices)

« compute normal vectors
— by averaging triangle normals (problem: thin triangles!)
— by estimating the gradient of the field f (x; )(better)
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Iso-Surface / Volume

lHlumination




What About Volume lllumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!



Local lllumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This Is the new "emissive" color in the
emission/absorption optical model

Composite as usual



Local lllumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This Is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only
interested in points on the surface;
in marching cubes: the vertices)



The marching cubes algorithm
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Local lllumination Model: Phong Lighting Model oS,

IPhong — Iambient =+ Idiffuse =+ Ispecular

Ambient + Diffuse + Specular

Phong Reflection



Local lllumination Model: Phong Lighting Model oS,

IPhong — Iambient =+ Idiffuse =+ Ispecular

Ambient Diffuse Specular Combined




Local Shading Equations

Standard volume shading adapts surface shading
Most commonly Blinn/Phong model

But what about the "surface" normal vector?

n
+

diffuse reflection specular reflection



Local lllumination Model: Phong Lighting Model ¢=

IPhong — Iambient =+ Idiffuse - Ispecular

Iambient — ka Ma, Ia



Local lllumination Model: Phong Lighting Model ¢=

IPhong — Iambient =+ Idiffuse - Ispecular

e

ka Mg Igcosp  if p < g
kd Md Id max((n- l), 0)

Idiffuse



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

n
a-b=||al|||bl|| cosb a-b= E a;b;
=1
(geometric definition, (standard inner product
independent of coordinates) in Cartesian coordinates)

Many uses:
« Project vector onto another vector
* Project into basis (using the dual basis, see later)

« Project into tangent plane
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Local lllumination Model: Phong Lighting Model ¢=

IPhong — Iambient =+ Idiffuse - Ispecular

n
Ispecular — ks Ms IS COS  p,

ks Mg Ig (r-v)"

must also clamp!



Local lllumination Model: Phong Lighting Model ¢=

IPhong — Iambient =+ Idiffuse - Ispecular

Ispecular

h

X

kS MS IS (h * Il)n

|

-1

must also clamp!

half-way vector



The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

of of Of\ "

g _ vf _ (only correct in Cartesian
— p— ’ ’ coordinates: see later)
Ox Oy 0z
Local approximation to isosurface at any point: smaller
tangent plane = plane orthogonal to gradient scalar

-8 values

Normal of this isosurface:
normalized gradient vector
(negation is common convention)

n=-g/lg|

larger
scalar
values



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

n
a-b=||al|||bl|| cosb a-b= E a;b;
=1
(geometric definition, (standard inner product
independent of coordinates) in Cartesian coordinates)

Many uses:
« Project vector onto another vector
* Project into basis (using the dual basis, see later)

« Project into tangent plane
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Gradient and Directional Derivative

Gradient V f(x, y, z) of scalar function f(x,y,z):

T
Vf(x y Z) — (af(x’y’ Z) &f(X,y, Z) af(x7y7 Z) ) (only cprrect in Cartesian
77 o ax ? ay ? aZ coordinates: see later)

Directional derivative in direction u :
Duf(x,y,2) =Vf(x,y,z)-u

And therefore also:
Duf(x,y,z) = [|Vf|| |lu]| cos®
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Gradient and Directional Derivative

Gradient V f(x, y, z) of scalar function f(x,y,z):

Vf()(jjy7 Z) — (af(x7y7 Z) 7 &f(xaya Z) 7 af(x7y7 Z) ) g (only correct in Cartesian

ax ay aZ coordinates: see later)

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

Jd d J
Vi(xy.2) = f(;;y,Z) - f(;;y,Z) it f(gazy,Z) .
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(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences
« Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid

 Image processing filters; e.g. Sobel (33 neighbors in 3D) — o o
© o o0 o

Continuous convolution filters ® .e oo
* Derived continuous reconstruction filters —Q0—O0—0—0-

* E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

/4 !/
fleo+h) = fleo) + L0 o LIy
= > ——h".
n=0
Forward differences / backward differences
f(x()), _ f(x() + h) o f(xO) _l_O(h)

h
f(xo) — f(xo — h)
’ + o(h)
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Finite Differences

Central differences

f(iCo-I—h) f,(xﬂ) h + f”(IO) h2 —|—0(h3)

I
=
X
<
_|_
=

! 2!
feo—h) = flao) — L8 p ¢ L0 p2 o
iy J@o+h)— flzo—h)
f(2o) = o7 +o(h?)
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Central Differences

Need only two neighboring voxels per derivative

Most common method (x, y+1, 2)

on a curve f(x, vy, z+1)
f(x-1, v, z) f(x+1, v, 7)
f(x, vy, z-1)
f(Xa Y'la Z)
g, = 0.5( £(x+1, v, z) - £(x-1, v, z) )
= 0.5( £ , +1, - f , -1, .
. CrOooysdom = 2o ¥yt 2 ) 6 a volume

0.5( £(x, v, z+1) - £(x, v, z-1) )

Q
N
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