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CS 247 - Scientific Visualization
Lecture 11: Scalar Field Visualization, Pt. 4
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Reading Assignment #6 (until Mar 9)

Read (required):

» Real-Time Volume Graphics, Chapter 2
(GPU Programming)

* Reminder: Real-Time Volume Graphics, Chapter 5.4

Read (optional):

» Paper:
Gregory M. Nielson and Bernd Hamann,

The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,
Visualization 1991

https://dl.acm.org/doi/abs/10.5555/949607.949621



Ambiguities of contours

What is the correct contour of c=47
Two possibilities, both are orientable:

« connect high values

e connectlow values --——-—-——--_.

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear
interpolation?
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Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

critical point
(saddle point)

here, the critical
value is 2/3=0.666...

“Asymptotic decider”: resolve ambiguous configurations (6 and 9) by
comparing specific iso-value with critical value (scalar value at critical point)



From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

3D - Marching Cubes Algorithm:

Locate the surface corresponding to a user-specified iso value

1.
2. Create triangles

3. Calculate normals to the surface at each vertex
4.

Draw shaded triangles
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Marching Cubes

! i 7 r
I
S T — 4 + Foreach cell, we have 8 vertices with 2
, possible states each (inside or outside).
/A “ ¥ I~ This gives us 28 possible patterns = 256
o W o« cases.
S S 1 ° Enumerate cases to create a LUT
—/L.,: ) 4 =3 K Use symmetries to reduce problem
— A ’ from 256 to 15 cases.
AT . ;
/% |/ I /| | Explanations
L - /_dl . Data Visualization book, 5.3.2
A —_| © Marching Cubes: A high resolution 3D
g g | ~J ‘x surface constryctlon algorithm,
) v < —7 Lorensen & Cline, ACM SIGGRAPH 1987
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The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

« contours on planar slices, followed by

+ "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
» Pieces of the isosurfaces are generated on a cell-by-cell basis.

« Similarto marc[jing squares, a 8-bit number is computed from
the 8 signs of f(x;) on the corners of a hexahedral cell.

« The isosurface piece is looked up in a table with 256 entries.
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The marching cubes algorithm

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
 rotational symmetries of the cube

» reflective symmetries of the cube

+ sign changes of f(x;)

They published a reduced set of 147) cases shown on the next
slides where

» white circles indicate positive signs of f(x;)
« the positive side of the isosurface is drawn in red, the negative
side in blue.

*) plus an unnecessary "'case 14" which is a symmetric image of case 11.
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The marching cubes algorithm

O
case 5 case 6
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The marching cubes algorithm

case 12

Ronald Peikert

case 13

SciVis 2009 - Contouring and Isosurfaces

2-18



The marching cubes algorithm

Do the pieces fit together?

* The correct isosurfaces of the trilinear
interpolant would fit (trilinear reduces to
bilinear on the cell interfaces)

« but the marching cubes polygons don't
necessarily fit.

Example
« case 10, on top of
« case 3 (rotated, signs changed)

have matching signs at nodes but polygons
don't fit.
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The marching cubes algorithm

,I
s
” i

- &
case 3C case 6¢ case /¢
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The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:
 build a table of the 28 cases
« derive a table of the 256 cases, containing info on

— intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0,2), (0,4), (1,3), (1,9)

— triangles based on these points, e.g. for case 3/256:
(0,2,1), (1,3,2).
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The marching cubes algorithm

Loop over cells:
- find sign of f(x;) for the 8 corner nodes, giving 8-bit integer
* use as index into (256 case) table

 find intersection points on edges listed in table, using linear
iInterpolation

* generate triangles according to table

Post-processing steps:

« connect triangles (share vertices)

« compute normal vectors
— by averaging triangle normals (problem: thin triangles!)
— by estimating the gradient of the field f (x; )(better)
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Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

2
x1,yl,z1 =]
coords for %3 .v3 . z3 struct face 1
vertex 1 Y3 — float verts[3][3]
xl,yl,z1 — DataType val;
x3,y3,23 face 2 GL_CCW
x4,y4,z4 4 (if orientable

e manifold)

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately
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Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

2
5
vertex list face list
x1l,vy1l, (z1) 1,2,3 3
x2,y2, (z2) 1,3,4
coords for x3,y3, (z3) 2.1,5
vertex 1 x4,y4, (z4) GL_CCW

(if orientable
manifold)

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)
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Orientability (2-manifold embedded in 3D)

not orientable

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

Moebius strip

Triangle meshes (only one side!)
 Edges
 Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)
(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side) 2
* Triangles
 Consistent front side vs. back side 3
* Normal vector; or ordering of vertices (CCW/CW) 1
 See also: “right-hand rule” GL_CCW
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Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

critical point
(saddle point)

here, the critical
value is 2/3=0.666...

“Asymptotic decider”: resolve ambiguous configurations (6 and 9) by
comparing specific iso-value with critical value (scalar value at critical point)



Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #1: 1 at bottom-left and top-right, 0 at top-left and bottom-right
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Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right
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Bi-Linear Interpolation: Critical Points %

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point
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Bi-Linear Interpolation: Critical Points %

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point
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