

CS 247 – Scientific Visualization Lecture 9: Scalar Field Visualization, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #5 (until Mar 2)

Read (required):

Gradients of scalar-valued functions

```
https://en.wikipedia.org/wiki/Gradient
```

Critical points

```
https://en.wikipedia.org/wiki/Critical point (mathematics)
```

Multivariable derivatives and differentials

Dot product, inner product (more general)

```
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Inner product space
```

Scalar Fields

What are contours?

Set of points where the scalar field s has a given value c:

$$S(c) := \{ x \in \mathbb{R}^n \colon f(x) = c \}$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- · connect points in each cell

$$\bullet \quad \tilde{f}(x_i) < 0$$

$$\circ \quad \tilde{f}(x_i) > 0$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$\bullet \quad f(x_i) < c$$

o
$$f(x_i) \ge c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$\bullet \quad f(x_i) \le c$$

o
$$f(x_i) > c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{X}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

Orientability (1-manifold embedded in 2D)

Orientability of 1-manifold:

Possible to assign consistent left/right orientation

Iso-contours

- Consistent side for scalar values...
 - greater than iso-value (e.g, left side)
 - less than iso-value (e.g., *right* side)
- Use consistent ordering of vertices (e.g., larger vertex index is "tip" of arrow; if (0,1) points "up", "left" is left, ...)

not orientable

Moebius strip (only one side!)

•
$$\tilde{f}(x_i) < 0$$

• $\tilde{f}(x_i) > 0$

o
$$\tilde{f}(x_i) > 0$$

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c- ε where ε is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at c- ε and c+ ε
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

(except where the boundary is hit)

Example

contour levels

--- 4? --- 6-ε --- 8-ε --- 8+ε

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

- connect high values ————
- connect low values

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama