

King Abdullah University of Science and Technology

CS 247 – Scientific Visualization Lecture 4: Data Representation, Pt. 1

Markus Hadwiger, KAUST

Reading Assignment #2 (until Feb 9)

Read (required):

- Data Visualization book, finish Chapter 2
- Data Visualization book, Chapter 3 until 3.5 (inclusive)
- Data Visualization book, Chapter 4 until 4.1 (inclusive)
- Continue familiarizing yourself with OpenGL if you do not know it !

Programming Assignments Schedule (tentative)

Assignment 0:	Lab sign-up: join discord, setup github account + get repo Basic OpenGL example [we will offer a tutorial!]	until	Feb 5
Assignment 1:	Volume slice viewer	until	Feb 16
Assignment 2:	Iso-contours (marching squares)	until	Mar 2
Assignment 3:	Iso-surface rendering (marching cubes)	until	Mar 23
Assignment 4:	Volume ray-casting, part 1 Volume ray-casting, part 2	until until	Apr 13 Apr 20
Assignment 5:	Flow vis, part 1 (hedgehog plots, streamlines, pathlines)	until	May 4
Assignment 6:	Flow vis, part 2 (LIC with color coding)	until	May 14

Programming Assignment #1: Slice Viewer

Basic tasks

- Download data into 3D volume texture
- Display three different axis-aligned slices using OpenGL texture mapping using the 3D volume texture

Minimum

- The slice position should be adjustable for each slice view.
- Make sure the aspect ratio of the shown slices is correct.
- If the window is resized, the slice is resized with the correct aspect ratio (no distortions)

Bonus

- Show all three axis aligned slices at once
- Show arbitrarily aligned slices with an interface to change the arbitrary slice

Texture Mapping

2D Texture Mapping

3D Texture Mapping

Data Representation

Data == Functions

Mathematical Functions

Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from *domain* (X) to *codomain* (Y)

$$f \colon X \to Y$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{(x, f(x)) | x \in X\} \subset X \times Y$$

Mathematical Functions

Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from *domain* (X) to *codomain* (Y)

$$f \colon \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{ (x, f(x)) | x \in \mathbb{R}^n \} \subset \mathbb{R}^n \times \mathbb{R}^m \simeq \mathbb{R}^{n+m}$$

© Weiskopf/Machiraju/Möller

Example: Scalar Fields

2D scalar field

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$x \mapsto f(x)$$

Graph: $G(f) := \{(x, f(x)) | x \in \mathbb{R}^2\} \subset \mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3$

pre-image

$$S(c) := f^{-1}(c)$$

iso-contour $(\nabla f \neq 0)$

Example: Scalar Fields

3D scalar field

$$f: \mathbb{R}^3 \to \mathbb{R}$$
$$x \mapsto f(x)$$

Graph: $G(f) := \{(x, f(x)) | x \in \mathbb{R}^3\} \subset \mathbb{R}^3 \times \mathbb{R} \simeq \mathbb{R}^4$

pre-image

$$S(c) := f^{-1}(c)$$

iso-surface $(\nabla f \neq 0)$

?

data	description	visualization example
$N^1 \rightarrow R^1$	value series	bar chart, pie chart, etc.
$R^1 \rightarrow R^1$	scalar function over R	(line) graph
R²→R ¹	scalar function over R ²	2D-height map in 3D, contour lines in 2D, false color map
$R^2 \rightarrow R^2$	2D vector field	hedgehog plot, LIC, streamlets, etc.
R ³ →R ¹	scalar function over R ³ (3D densities)	iso-surfaces in 3D, volume rendering
$R^3 \rightarrow R^3$	3D vector field	streamlines/pathlines in 3D

data	description	visualization example
$N^1 \rightarrow R^1$	value series	bar chart, pie chart, etc.
Midget Sales (millions) (Midget Sales (millions) (Midget Sales (millions)) (Midget Sales (millio	PLplot Example 12	

data description visualization example $R^2 \rightarrow R^2$ 2D-vector field hedgehog plot, LIC, streamlets, etc <u>╘</u>╌╘╾╤╾╤╴╤╴╤╴╤╴╤╴ ← ← ← ← ← ← ť- ť- ť- ť-·← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← f - f - f - f - f - f ← ← ← ← f- f- f- f-f-ς ς ς **GRRRRRRR**R そうちゃうじょうちょう ~ 1

data	description	visualization example
$R^3 \rightarrow R^3$	3D-flow	streamlines, streamsurfaces

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama