

CS 247 – Scientific Visualization Lecture 1: Introduction

Markus Hadwiger, KAUST

Lecture Overview

Goals

- Basics: Learn the most important techniques in scientific visualization
- Practice: Implement scalar and vector/flow field visualization techniques in OpenGL

Time and location

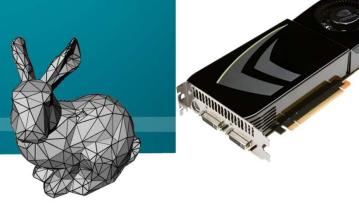
Sunday/Wednesday, 10:00 – 11:30, Bldg 9, Room 4229.

Course webpage:

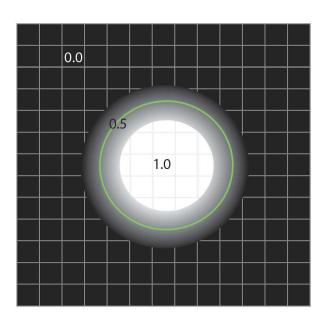
https://vccvisualization.org/CS247_Scientific_Visualization/

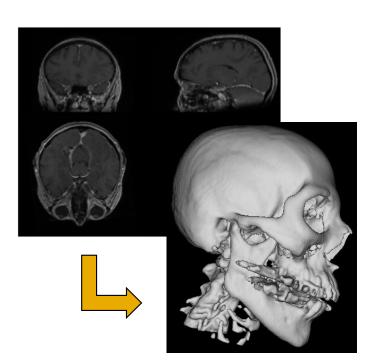
Contact

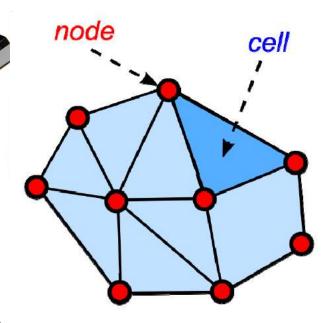
Markus Hadwiger
 markus.hadwiger@kaust.edu.sa

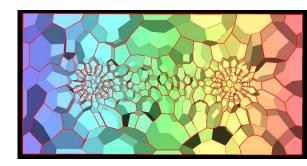

• Programming assignments kaust.cs247@gmail.com

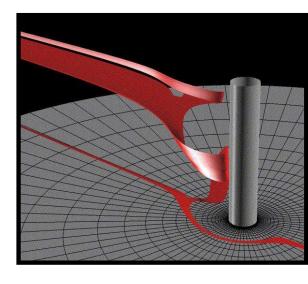
Alberto JaspeAmani Ageeliamani ageeli@kaust.edu.sa


Prerequisites

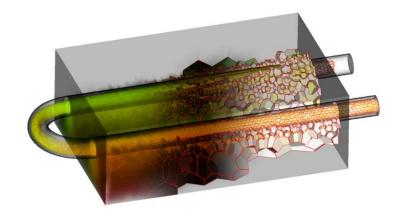

- C/C++ programming, computer graphics, linear algebra, multi-variable calculus
- OpenGL experience (a basic graphics course, ...) very helpful!

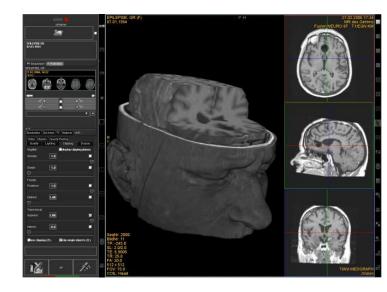

Syllabus (1)




- Introduction
- Visualization basics, pipeline, and examples
- First scalar visualization example: iso-contouring
- GPU and computer graphics primer
- Data representation (grid types, data structures)


Syllabus (2)


Scalar field visualization

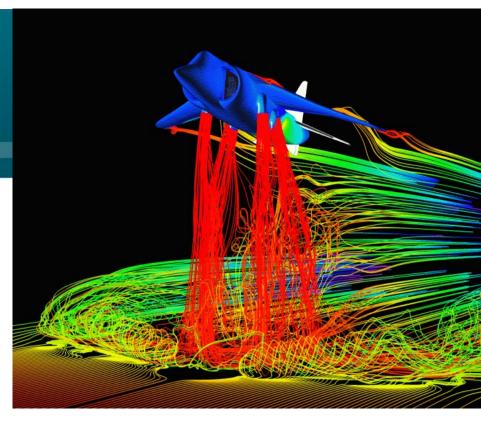

- Iso-surface rendering
- Volume rendering
- Transfer functions
- Volume lighting
- Unstructured grid visualization

Applications

- Medical visualization
- Industrial CT (computed tomography)
- CFD (computational fluid dynamics) visualization of scalar quantities

Syllabus (3)

Vector field and flow visualization


- Direct vs. indirect techniques
- Particle tracing
- Integral curves and surfaces
- Dense flow visualization techniques

Applications

- CFD flow visualization
- Weather visualization

If time permits

- Basic tensor visualization
- Visualization systems

Lecture Structure and Grading

Lectures

Weekly reading assignments (required + sometimes additional optional ones)

Part of quiz questions (see later)

Programming assignments

• 6+1 programming assignments; short written report + personal presentation for each

Quizzes

- 4 (or maybe only 3, we'll see) quizzes, 30 min each; announced a week in advance, roughly every 3-4 weeks
- From lectures, (required) reading assignments, programming assignments

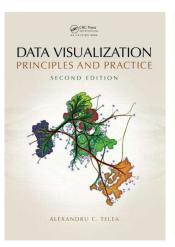
Grading: 60% prog. assignments; 40% quizzes

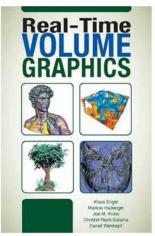
No mid-term/final exam!

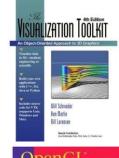
Resources

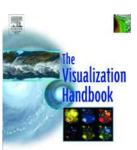
Course webpage:

https://vccvisualization.org/CS247_Scientific_Visualization/


Textbooks:


- Data Visualization: Principles and Practice
- Real-Time Volume Graphics


Additional books:


- The Visualization Toolkit:
 An Object-Oriented Approach to 3D Graphics (4th Edition)
- The Visualization Handbook
- OpenGL Programming Guide (9th edition, OpenGL 4.5) www.opengl.org/documentation/red_book/
- For GPU, GPGPU, and graphics programming, also look here:

https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

Programming Assignments (1)

6 assignments (+1 introductory)

- Based on C/C++ and OpenGL
- You get a basic framework from us (in git repository)

Organization

1. Use git + github classroom to get material and submit solution

```
Sign up: https://classroom.github.com/classrooms/98274160-cs247-kaust-2025 Tutorial: https://www.youtube.com/watch?v=ObaFRGp_Eko
```

- 2. Assignment info and framework in git repository
- 3. Submit solution and report via git by submission deadline
- 4. Personal (online) presentation after submission

Programming Assignments (2)

- Submit via git at the latest on day the assignment is due (code, libs, everything that is needed to run your program)
- Submission must include short report (2 pages, pdf), including short explanation of algorithms, your solution, problems, how to run it, screenshots
- Personal presentations:
 Present your program live and explain source code (10-15 min)
 - Sign up for presentation slot in advance (doodle)
 - Present to Alberto

Programming Assignments (3)

Grading

- Submission complete, code working for all the required features
- Documentation complete (report, but also source code comments!)
- Personal presentation
- Optional features, coding style, clean solution
- Every day of late submission reduces points by 10%
- No copies from the Internet (or anywhere else)!
 You have to do it yourself and understand what you program:
 your explanations during the presentations will be part of the grade!

Programming Assignments (4)

General contact: kaust.cs247@gmail.com

Teaching Assistants:

- Alberto Jaspe (alberto.jaspe@kaust.edu.sa)
 - main contact for assignments; assignment presentations
- Amani Ageeli (amani.ageeli@kaust.edu.sa)
 - help with programming questions

- 1. Think about it, read about it, google it!
- **2. Discuss on discord** (if you are registered, you will get an invite; if not, email Alberto)
- 3. Ask TAs: kaust.cs247@gmail.com (Alberto, Amani)

Programming Assignments Schedule (tentative)

Assignment 0:	Lab sign-up: join discord, setup github account + get repo Basic OpenGL example [we will offer a tutorial!]	until	Feb 2
Assignment 1:	Volume slice viewer	until	Feb 16
Assignment 2:	Iso-contours (marching squares)	until	Mar 2
Assignment 3:	Iso-surface rendering (marching cubes)	until	Mar 23
Assignment 4:	Volume ray-casting, part 1	until	Apr 13
	Volume ray-casting, part 2	until	Apr 20
Assignment 5:	Flow vis, part 1 (hedgehog plots, streamlines, pathlines)	until	May 4
Assignment 6:	Flow vis, part 2 (LIC with color coding)	until	May 14

Reading Assignment #1 (until Feb 2)

Join discord; setup github classroom (Alberto gives you access)

Read (required):

- Data Visualization book, Chapter 1
- Data Visualization book, Chapter 2 until 2.3 (inclusive)
- Download and look at:
 NIH/NSF Visualization Research Challenges report

```
http://tab.computer.org/vgtc/vrc/
NIH-NSF-VRC-Report-Final.pdf
```

Start familiarizing yourself with OpenGL if you do not know it!

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama