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Lecture 28: Vector / Flow Visualization, Pt. 7
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Reading Assignment #14++ (1)

Reading suggestions:
• Data Visualization book, Chapter 6.7

• J. van Wijk: Image-Based Flow Visualization,
ACM SIGGRAPH 2002
http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

• T. Günther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:
Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite 
Winds of an Atmospheric Karman Vortex Street, 2021
https://www.essoar.org/doi/10.1002/essoar.10506682.2

• H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition – A Survey, TVCG 19(8), 2013
https://doi.org/10.1109/TVCG.2012.316

• Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE (3Blue1Brown)

• Matrix exponentials:
https://www.youtube.com/watch?v=O85OWBJ2ayo (3Blue1Brown)
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Reading Assignment #14++ (2)

Reading suggestions:
• Tobias Günther, Irene Baeza Rojo:

Introduction to Vector Field Topology
https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

• Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:
State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties
https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.14037

• B. Jobard, G. Erlebacher, M. Y. Hussaini:
Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization
http://dx.doi.org/10.1109/TVCG.2002.1021575

• Anna Vilanova, S. Zhang, Gordon Kindlmann, David Laidlaw:
An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications
http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf



Interlude:
Derivatives via Convolution

Interlude:
Derivatives via Convolution



Convolve with Derivatives of Kernel

Example
• Cubic B-spline and derivatives

• Use 1D kernels and
tensor product for tri-cubic

• Well-suited for
curvature computation
[Kindlmann et al., 2003]

• Expensive convolution?
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Fast Tri-Cubic Filtering on GPUs

Cubic: Need 64 neighbors; usually means 64 nearest-neighbor lookups

• But on GPUs 8 tri-linear lookups suffice for tri-cubic B-spline

• Kernels are transformed into 1D look-up textures (or simple equations)

• Newer: procedural kernel computation (see NVIDIA CUDA SDK)
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[Sigg and Hadwiger, 2005]  (GPU Gems 2)
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Lagrangian vs. Eulerian

Eulerian
• Flow properties given at fixed spatial positions (grid points)

• Partial time derivative

Lagrangian
• Flow properties given for each particle (particles are moving)

• Material time derivative

vectors given at grid points
(grid points do not move)

vectors given at particle positions
(particle positions do move)

Eulerian
specification:

Lagrangian
specification:



Lagrangian vs. Eulerian 

• Lagrangian: move along with the particle

• Eulerian: consider fixed point in space, look at particles moving through

• Example for pixels: rotate image (a),
Lagrangian: move pixels forward (b),
Eulerian: fetch pixels from backward dir. (c) (see semi-Lagrangian algo.)
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Material Derivative (1)

The material time derivative (convective derivative) gives the rate 
of change when following a particle in the flow
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

We are given                      with four independent variables;

But now we want to go along a parameterized path with parameter t,
so x, y, z become dependent variables:

Along this path, our goal is now to compute the derivative of the function

with t as only independent variable:
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Advection

Advection equation; velocity field u( x, y, z, t ),
no change following particle, just advection:
set material derivative = 0:

In the Navier-Stokes equations: “self-advection” of velocity
• Advect scalar components of velocity field individually

(actually two equations in 2D, three equations in 3D)

this is equivalent to 
saying that the 
acceleration is zero!
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Fluid Simulation in Computer Graphics

Goal
• Visually appealing and convincing 

results
– Physically based (Navier-Stokes)
– But not necessarily physically 

accurate

• Effects for movies and games

• Lots of publications in computer 
graphics community (SIGGRAPH, ...)

• Very good overview:
Robert Bridson, Fluid Simulation for 
Computer Graphics, AK Peters 2008
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Fluid Simulation and Rendering

Compute advection of fluid
• (Incompressible or compressible) Navier-Stokes solvers

• Lattice Boltzmann Method (LBM)

Discretized domain
• Velocity, pressure

• Dye, smoke density,
vorticity, …

Courtesy Mark Harris



Velocity Field

2D or 3D vector field

• Stored in 2D or 3D texture/array
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Vector Calculus

Gradient
• Scalar field → vector field

• Points in direction of highest change

Divergence
• Vector field → scalar field

• Density exit rate (source?, sink?)

Laplacian
• Scalar field → scalar field

• Divergence of gradient
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Fluid Simulation: Navier Stokes (1)

Incompressible (divergence-free) Navier Stokes equations

Components:
• Self-advection of velocity (i.e., advection of velocity according to velocity)

• Pressure gradient (force due to pressure differences)

• Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

• Application of (arbitrary) external forces, e.g., gravity, user input, etc.
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this is the velocity 
gradient tensor!



Fluid Simulation: Navier Stokes (2)

Given a (Cartesian) coordinate system, the momentum 
equation can be seen as a system of equations
(2 equations in 2D, 3 equations in 3D)

For 2D (Cartesian):

these are PDEs!



Fluid Simulation: Navier Stokes (2)

Actually, the momentum equation is a system of equations
(2 equations in 2D, 3 equations in 3D)
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Advection

Advection operator, with velocity field u(t;x,y,z)

• Advection of scalar quantity, here: a(t;x,y,z), with incomp. flow:

Self-advection of velocity
• Advect scalar components of velocity field individually

(actually two equations in 2D, three equations in 3D):
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Vector Calculus: Finite Difference Approximations

Differences between neighboring points
• Result of Taylor expansion

• Discretization leads to diagonal matrix for the whole system of eqs.
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Stable Fluids Solver Overview
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Courtesy Jos Stam



Stable Fluids (1)
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• Add force

• Advect

• Diffuse

• Project: solve for pressure

• Project: sub. pressure gradient

   
2 p w3

   u(x,t  t)  w3 p

   
I t2 w3  w2

w2  w1(x  w1t)
   w1  u(x,t) f(x,t)t

   
2 p   w3

   u(x,t  t)  w3  p

   
I  t2 w3  w2

w2  w1(x  w1t)



Stable Fluids (2)

Advect

Semi-Lagrangian advection
• Trace backwards in time

• First order scheme
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   w1  u(x,t) f(x,t)t



Stable Fluids (2)
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   w1  u(x,t) f(x,t)t



Stable Fluids (3)

Viscous diffusion

Solve Poisson equation for velocity
• Discretization yields sparse system

• Jacobi [GPU Gems], Gauss-Seidel [Krüger and Westermann, 2003]

• Multigrid [Bolz et al., 2003; Goodnight et al., 2003]

• CG (conjugate gradient) [Krüger and Westermann, 2003]

• Pre-conditioned CG,
e.g., modified incomplete Cholesky CG [Bridson, 2006, 2008]
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Stable Fluids (4)

Solve for pressure

Solve Poisson equation for pressure
• Discretization yields sparse system

• Jacobi [GPU Gems], Gauss-Seidel [Krüger and Westermann, 2003]

• Multigrid [Bolz et al., 2003; Goodnight et al., 2003]

• CG (conjugate gradient) [Krüger and Westermann, 2003]

• Pre-conditioned CG,
e.g., modified incomplete Cholesky CG [Bridson, 2006, 2008]
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   
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Stable Fluids (5)

Subtract pressure gradient

Obtain final divergence-free velocity field

Advect other quantities (dye, smoke density, temperature, …) 
using this velocity field
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   u(x,t  t)  w3 p

Courtesy Jos Stam



Distance Fields and Level Sets

• Additional volume: distance field

• Solve PDE for every sample

• Speed function F determines
evolution/deformation
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Water Surface Represented as Distance Field

Advection pushes around signed distances

Ray-casting displays current zero level set (distance 0)
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Volume Rendering

Hellgate London / GPU Gems 3 chapter [Crane et al., 2007]

Markus Hadwiger, KAUST 39



Energy-Preserving Integrators

• Eulerian
scheme

• No numerical
dissipation

• Easier to control
intended viscosity

• [Mullen et al.,
SIGGRAPH 2009]
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Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


