CS 247 - Scientific Visualization
 Lecture 26: Vector / Flow Visualization, Pt. 5

Markus Hadwiger, KAUST

Reading Assignment \#13 (until May 7)

Read (required):

- Data Visualization book
- Chapter 6.1 (Divergence and Vorticity)
- Chapter 6.6 (Texture-Based Vector Visualization)
- Diffeomorphisms / smooth deformations https://en.wikipedia.org/wiki/Diffeomorphism
- Learn how convolution (the convolution of two functions) works: https://en.wikipedia.org/wiki/Convolution
- B. Cabral, C. Leedom:

Imaging Vector Fields Using Line Integral Convolution, SIGGRAPH 1993 http://dx.doi.org/10.1145/166117.166151

Quiz \#3: May 7

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments (except optional ones)
- Programming assignments (algorithms, methods)
- Solve short practical examples

Vector Fields, Vector Calculus, and Dynamical Systems

Fluid Simulation: Navier Stokes Equations

Incompressible (divergence-free) Navier Stokes equations

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \cdot \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \mathbf{u}+\mathrm{F}, \\
\nabla \cdot \mathbf{u}=0
\end{gathered}
$$

Components:

- Self-advection of velocity (i.e., advection of velocity according to velocity)
- Pressure gradient (force due to pressure differences)
- Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)
- Application of (arbitrary) external forces, e.g., gravity, user input, etc.

Some Vector Calculus (1)

Gradient (scalar field \rightarrow vector field)

- Direction of steepest ascent; magnitude = rate

$$
\nabla p=\left(\frac{\partial p}{\partial x}, \frac{\partial p}{\partial y}\right)
$$

- Conservative vector field: gradient of some scalar (potential) function

Divergence (vector field \rightarrow scalar field)

- Volume density of outward flux: "exit rate: source? sink?"

$$
\nabla \cdot \mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}
$$

- Incompressible/solenoidal/divergence-free vector field: div u = 0 can express as curl (next slide) of some vector (potential) function
Laplacian (scalar field \rightarrow scalar field) $\quad \nabla^{2} p=\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}$
\quad - Divergence of gradient
- Measure for difference between point and its neighborhood

Some Vector Calculus (2)

Curl (vector field \rightarrow vector field)

- Circulation density at a point (vorticity)
- If curl vanishes everywhere: irrotational/curl-free field

$$
\nabla \times \mathbf{v}=\left(\begin{array}{l}
w_{y}-v_{z} \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
$$

- Every conservative (path-independent) field is irrotational
these are partial derivatives!

Example: curl = const everywhere

Some Vector Calculus (3)

Curl (vector field \rightarrow vector field)

- Circulation density at a point (vorticity)
- If curl vanishes everywhere: irrotational/curl-free field

$$
\nabla \times \mathbf{v}=\left(\begin{array}{l}
w_{y}-v_{z} \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
$$

- Every conservative (path-independent) field is irrotational
these are partial derivatives! (and vice versa if domain is simply connected)

Example: curl not always "obviously rotational"

Some Vector Calculus (4)

Curl (vector field \rightarrow vector field)

- Circulation density at a point (vorticity)
- If curl vanishes everywhere: irrotational/curl-free field

$$
\nabla \times \mathbf{v}=\left(\begin{array}{l}
w_{y}-v_{z} \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
$$

- Every conservative (path-independent) field is irrotational (and vice versa if domain is simply connected)

Example:
non-obvious curl-free field

$$
\mathbf{V}(x, y, z)=\frac{(-y, x, 0)}{x^{2}+y^{2}}
$$

[this domain is not not defined at $(x, y)=(0,0)$
simply connected! it is the "punctured plane", $v_{x}=u_{y} \quad \nabla \times \mathbf{v}=0$ i.e., the point $(0,0)$ is not in the domain]
velocity gradient $\nabla \mathbf{v}$ is symmetric (see later)

Some Vector Calculus (5)

Curl (vector field \rightarrow vector field)

- Circulation density at a point (vorticity)
- If curl vanishes everywhere: irrotational/curl-free field

$$
\nabla \times \mathbf{v}=\left(\begin{array}{l}
w_{y}-v_{z} \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
$$

- Every conservative (path-independent) field is irrotational (and vice versa if domain is simply connected)

Book:

fourth edition
h. m. schey

Interactive tutorial on curl: http://mathinsight.org/curl_idea

Fundamental theorem of vector calculus: Helmholtz decomposition: Any vector field can be expressed as the sum of a solenoidal (divergence-free) vector field and an irrotational (curl-free) vector field (Helmholtz-Hodge: plus harmonic vector field)

Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field \rightarrow tensor field)

- Gradient of vector field: how does the vector field change?
- In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

$$
\nabla \mathbf{v}(x, y, z)=\left(\begin{array}{lll}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right) \quad \begin{aligned}
& \text { these are } \\
& \text { partial derivatives! }
\end{aligned}
$$

- Can be decomposed into symmetric part + anti-symmetric part

$$
\nabla \mathbf{v}=\mathbf{D}+\mathbf{S} \quad \text { velocity gradient tensor }
$$

sym.: $\quad \mathbf{D}=1 / 2\left(\nabla \mathbf{v}+(\nabla \mathbf{v})^{\mathrm{T}}\right)$ deform.: rate-of-strain tensor
skew-sym.: $\mathbf{S}=1 / 2\left(\nabla \mathbf{v}-(\nabla \mathbf{v})^{\mathrm{T}}\right) \quad$ rotation: vorticity/spin tensor

Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor

- Antisymmetric part of velocity gradient tensor
- Corresponds to vorticity/curl/angular velocity (beware of factor $1 / 2$)

$$
\begin{aligned}
& \mathbf{S}=\mathbf{1} / \mathbf{2}\left(\nabla \mathbf{v}-(\nabla \mathbf{v})^{\mathrm{T}}\right) \\
& \mathbf{S}=\mathbf{1} / \mathbf{2}\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) \quad \omega=\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right)=\nabla \times \mathbf{v}=\left(\begin{array}{c}
w_{y}-v_{z} \\
\text { dertial are } \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
\end{aligned}
$$

S acts on vector like cross product with ω : S• $=1 / 2 \omega \times$

$$
\mathbf{v}^{(r)}=\mathbf{S} \cdot d \mathbf{r}=\frac{1}{2}\left[\nabla \mathbf{v}-(\nabla \mathbf{v})^{T}\right] \cdot d \mathbf{r}=\frac{1}{2} \boldsymbol{\omega} \times d \mathbf{r}
$$

Angular Velocity of Rigid Body Rotation

Rate of rotation

- Scalar ω : angular displacement per unit time ($\mathrm{rad} \mathrm{s}^{-1}$)
- Angle Θ at time t is $\Theta(t)=\omega t ; \omega=2 \pi f$ where f is the frequency $\left(f=1 / T ; s^{-1}\right)$
- Vector ω : axis of rotation; magnitude is angular speed (if ω is curl: speed x2)
- Beware of different conventions that differ by a factor of $1 / 2$!

Cross product of $1 / 2 \omega$ with vector to center of rotation (\mathbf{r}) gives linear velocity vector \mathbf{v} (tangent)

$$
\mathbf{v}^{(r)}=\frac{1}{2} \boldsymbol{\omega} \times d \mathbf{r}
$$

Velocity Gradient Tensor and Components (1)

Velocity gradient tensor

(here: in Cartesian coordinates)

$$
\begin{aligned}
& \nabla \mathbf{V}=\left[\begin{array}{lll}
\frac{\partial}{\partial x} v^{x} & \frac{\partial}{\partial y} v^{x} & \frac{\partial}{\partial z} v^{x} \\
\frac{\partial}{\partial x} v^{y} & \frac{\partial}{\partial y} v^{y} & \frac{\partial}{\partial z} v^{y} \\
\frac{\partial}{\partial x} v^{z} & \frac{\partial}{\partial y} v^{z} & \frac{\partial}{\partial z} v^{z}
\end{array}\right] \quad \begin{array}{l}
\text { these are the same } \\
\text { partial derivatives } \\
\text { as before! }
\end{array} \\
& \nabla \mathbf{V}=\frac{1}{2}\left(\nabla \mathbf{v}+(\nabla \mathbf{v})^{T}\right)+\frac{1}{2}\left(\nabla \mathbf{V}-(\nabla \mathbf{v})^{T}\right)
\end{aligned}
$$

Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)

$$
\mathbf{D}=\frac{1}{2}\left[\begin{array}{ccc}
2 \frac{\partial}{\partial x} v^{x} & \frac{\partial}{\partial y} v^{x}+\frac{\partial}{\partial x} v^{y} & \frac{\partial}{\partial z} v^{x}+\frac{\partial}{\partial x} v^{z} \\
\frac{\partial}{\partial x} v^{y}+\frac{\partial}{\partial y} v^{x} & 2 \frac{\partial}{\partial y} v^{y} & \frac{\partial}{\partial z} v^{y}+\frac{\partial}{\partial y} v^{z} \\
\frac{\partial}{\partial x} v^{z}+\frac{\partial}{\partial z} v^{x} & \frac{\partial}{\partial y} v^{z}+\frac{\partial}{\partial z} v^{y} & 2 \frac{\partial}{\partial z} v^{z}
\end{array}\right]
$$

$$
\operatorname{tr}(\mathbf{D})=\nabla \cdot \mathbf{v}
$$

Velocity Gradient Tensor and Components (3)

Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)

$$
\begin{aligned}
& \mathbf{S}=\frac{1}{2}\left[\begin{array}{ccc}
0 & \frac{\partial}{\partial y} v^{x}-\frac{\partial}{\partial x} v^{y} & \frac{\partial}{\partial z} v^{x}-\frac{\partial}{\partial x} v^{z} \\
\frac{\partial}{\partial x} v^{y}-\frac{\partial}{\partial y} v^{x} & 0 & \frac{\partial}{\partial z} v^{y}-\frac{\partial}{\partial y} v^{z} \\
\frac{\partial}{\partial x} v^{z}-\frac{\partial}{\partial z} v^{x} & \frac{\partial}{\partial y} v^{z}-\frac{\partial}{\partial z} v^{y} & 0
\end{array}\right] \\
& \mathbf{S}=\frac{1}{2}\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right] \quad \boldsymbol{\omega} \equiv \nabla \times \mathbf{v}
\end{aligned}
$$

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama

