

KAUST

CS 247 – Scientific Visualization Lecture 25: Vector / Flow Visualization, Pt. 4

Markus Hadwiger, KAUST

Reading Assignment #13 (until May 7)

Read (required):

- Data Visualization book
 - Chapter 6.1 (Divergence and Vorticity)
 - Chapter 6.6 (Texture-Based Vector Visualization)
- Diffeomorphisms / smooth deformations https://en.wikipedia.org/wiki/Diffeomorphism
- Learn how convolution (the convolution of two functions) works: https://en.wikipedia.org/wiki/Convolution
- B. Cabral, C. Leedom: *Imaging Vector Fields Using Line Integral Convolution*, SIGGRAPH 1993 http://dx.doi.org/10.1145/166117.166151

Quiz #3: May 7

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments (except optional ones)
- Programming assignments (algorithms, methods)
- Solve short practical examples

The Flow / Flow Map of a Vector Field (2)

Flow of an unsteady (time-dependent) vector field

 Map source position x from time s to destination position at time t (t < s is allowed: map forward or backward in time)

$$\Psi_{t,s}(x)$$

with

$$\psi_{t,s}(x) = x + \int_s^t \mathbf{v}(\psi_{\tau,s}(x), \tau) \,\mathrm{d}\tau$$

 $\psi_{s,s}(x)=x$

$$\psi_{t,r}(\psi_{r,s}(x)) = \psi_{t,s}(x)$$

The Flow / Flow Map of a Vector Field (3)

Flow of an unsteady (time-dependent) vector field

 Map source position x from time s to destination position at time t (t < s is allowed: map forward or backward in time)

$$\Psi_{t,s}(x) \qquad \Psi_{t,s}(x) = x + \int_s^t \mathbf{v}(\Psi_{\tau,s}(x), \tau) \, \mathrm{d}\tau$$

Can write explicitly as function of t, with s and x fixed

 $t \mapsto \psi_{t,s}(x) \longrightarrow \text{path line}$

Can write explicitly as function of s, with t and x fixed

$$s \mapsto \psi_{t,s}(x) \longrightarrow \text{streak line}$$

 $\Psi_{t,s}(x)$ is also often written as **flow map** $\phi_t^{\tau}(x)$ (with t:=s and either τ :=t or τ :=t-s)

The Flow / Flow Map of a Vector Field (4)

Can map a whole set of points (or the entire domain) through the

flow map (this map is a *diffeomorphism*): $t \mapsto \psi_{t,s}(U)$

The Flow / Flow Map of a Vector Field (5)

Time line: Map a whole curve from one fixed time (s) to another time (t)

$$t\mapsto \psi_{t,s}(c(\boldsymbol{\lambda}))$$

The Flow / Flow Map of a Vector Field (5)

Time line: Map a whole curve from one fixed time (s) to another time (t)

$$t\mapsto \psi_{t,s}(c(\boldsymbol{\lambda}))$$

Line Integral Convolution (LIC)

Line Integral Convolution

- Line Integral Convolution (LIC)
 - Visualize dense flow fields by imaging its integral curves
 - Cover domain with a random texture (so called ,input texture', usually stationary white noise)
 - Blur (convolve) the input texture along stream lines using a specified filter kernel
- Look of 2D LIC images
 - Intensity distribution along stream lines shows high
 - correlation
 - No correlation
 between
 neighboring
 stream lines

Line Integral Convolution I

- Line Integral Convolution (LIC):
 - goal: general overview of flow
 - approach: use dense textures
 - idea: flow ↔ visual correlation

Line Integral Convolution I

- Line Integral Convolution (LIC):
 - goal: general overview of flow
 - approach: use dense textures
 - idea: flow ↔ visual correlation

Line Integral Convolution II

- global visualization technique
- dense representation
- start with random texture
- smear along stream lines
- Only for stream lines!
 (steady flow, i.e. time-independent fields)

Line Integral Convolution III

- How LIC works
 - visualize dense flow fields by imaging integral curves
 - cover domain with a random texture ('input texture', usually stationary white noise)
 - blur (convolve) the input texture along stream lines

Line Integral Convolution III

- How LIC works
 - visualize dense flow fields by imaging integral curves
 - cover domain with a random texture ('input texture', usually stationary white noise)
 - blur (convolve) the input texture along stream lines

Line Integral Convolution III

- How LIC works
 - visualize dense flow fields by imaging integral curves
 - cover domain with a random texture ('input texture', usually stationary white noise)
 - blur (convolve) the input texture along stream lines

Line Integral Convolution IV

- Look of 2D LIC images
 - intensity along stream lines shows high correlation
 - no correlation between neighboring stream lines

Thomas Höllt // Lecture 21: Line Integral Convolution for Flow Visualization // 7

LIC Approach - Goal

- For every texel: let the texture value
 - correlate with neighboring texture values along the flow (in flow direction)
 - not correlate with neighboring texture values across the flow (normal to flow direction)
- Result: along streamlines the texture values are correlated
 ✓ visually coherent!

LIC Approach - Steps

- Idea: "smear" white noise (no a priori correlations) along flow
- Calculation of a texture value:
 - follow streamline through point
 - filter white noise along streamline

Thomas Höllt // Lecture 21: Line Integral Convolution for Flow Visualization // 9

Convolution Example

Gaussian Blur

en.wikipedia.org/wiki/Gaussian_blur

Cut off filter kernel after an extent of, e.g., 3*standard deviation in each direction

Example:

0.0000067	0.00002292	0.00019117	0.00038771	0.00019117	0.00002292	0.00000067
0.00002292	0.00078634	0.00655965	0.01330373	0.00655965	0.00078633	0.00002292
0.00019117	0.00655965	0.05472157	0.11098164	0.05472157	0.00655965	0.00019117
0.00038771	0.01330373	0.11098164	0.22508352	0.11098164	0.01330373	0.00038771
0.00019117	0.00655965	0.05472157	0.11098164	0.05472157	0.00655965	0.00019117
0.00002292	0.00078633	0.00655965	0.01330373	0.00655965	0.00078633	0.00002292
0.0000067	0.00002292	0.00019117	0.00038771	0.00019117	0.00002292	0.0000067

Note that 0.22508352 (the central one) is 1177 times larger than 0.00019117 which is just outside 3σ .

Can do multiple iterations to achieve larger effective filter size

StDev = 10

• Convolution defined as $(f * g)(x) := \int_{\mathbb{R}^n} f(\tau)g(x - \tau)d\tau$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

L	 	 		 		

 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 2$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 2$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

 $\frac{1}{4} \cdot 4 + \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 0$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

3	
---	--

 $\frac{1}{4} \cdot 4 + \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 0$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

3 2	
-----	--

 $\frac{1}{4} \cdot 2 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 8$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

3 2			
-----	--	--	--

 $\frac{1}{4} \cdot 2 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 8$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

3 2 21/2

 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 8 + \frac{1}{4} \cdot 0$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

3 2 21/2	
----------	--

 $\frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 8 + \frac{1}{4} \cdot 0$

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal

3 2 21/2 4	
------------	--

k(x) convolution kernel

$$(f * k)(x) = \int_{-L/2}^{L/2} f(\tau)k(x - \tau)d\tau$$

(f * k)(x) smoothed signal 3 2 21/2 4 3 3 4 41/2 5 4 21/2 11/2

LIC - Algorithm

LIC - 2D Example

Linear Algebra Approach (1)

• Toeplitz matrix: constant diagonals

$$\mathbf{T} := (t_{ij}) \text{ with } t_{ij} := t_{i-j}$$

$$\mathbf{T}^{N \times N} := \begin{bmatrix} t_0 & t_{(-1)} & t_{(-2)} & \dots & t_{(-(N-2))} & t_{(-(N-1))} \\ t_1 & t_0 & t_{(-1)} & \dots & t_{(-(N-3))} & t_{(-(N-2))} \\ t_2 & t_1 & t_0 & \dots & t_{(-(N-4))} & t_{(-(N-3))} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ t_{N-2} & t_{N-3} & t_{N-4} & \dots & t_0 & t_{(-1)} \\ t_{N-1} & t_{N-2} & t_{N-3} & \dots & t_1 & t_0 \end{bmatrix}$$

Linear Algebra Approach (2)

• Circulant matrix: special case of Toeplitz matrix

$$\mathbf{C} := (c_{ij})$$
 where $c_{ij} := c_{(i-j) \mod N}$

$$\mathbf{C}^{N \times N} := \begin{bmatrix} c_0 & c_{N-1} & c_{N-2} & \dots & c_2 & c_1 \\ c_1 & c_0 & c_{N-1} & \dots & c_3 & c_2 \\ c_2 & c_1 & c_0 & \dots & c_4 & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{N-2} & c_{N-3} & c_{N-4} & \dots & c_0 & c_{N-1} \\ c_{N-1} & c_{N-2} & c_{N-3} & \dots & c_1 & c_0 \end{bmatrix}$$

- Periodic convolution: multiply **C** with (periodic) signal in column vector
- The Fourier transform *diagonalizes* circulant matrices

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama