
CS 247 – Scientific Visualization
Lecture 17: Volume Visualization, Pt. 4

Markus Hadwiger, KAUST

2

Reading Assignment #9 (until Apr 2)

Read (required):
• Real-Time Volume Graphics, Chapter 7 (GPU-Based Ray Casting)

• Real-Time Volume Graphics, Chapter 4.5 – 4.8

3

Quiz #2: Apr 2

Organization
• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments (except optional ones)

• Programming assignments (algorithms, methods)

• Solve short practical examples

Opacity CorrectionOpacity Correction

Volume Rendering Integral Summary

Volume rendering integral
for Emission Absorption model

Iterative/recursive numerical solutions:

true emission true absorption

Back-to-front compositing Front-to-back compositing

here, all colors are associated colors!

Simple compositing only works as far as the opacity values are
correct… and they depend on the sample distance!

opacity correction formula

Opacity Correction

beware that usually this is done for each different scalar value
(every transfer function entry), not actually at spatial positions/intervals i

Associated Colors

Associated (or “opacity-weighted” colors) are often used in
compositing equations

Every color is pre-multiplied by its corresponding opacity

Our compositing equations assume associated colors!

Important:

Markus Hadwiger, KAUST 7

R
G
B
A

R*A
G*A
B*A
A

After opacity correction (updating all opacities accordingly),
all associated colors must also be updated accordingly!
(or combined/multiplied correctly on-the-fly!)

Interlude: “Self-Absorption” (1)

Our previous derivation of the discretization of the volume
rendering integral skipped over a small but important detail:

Emission and absorption combine in the same segment (interval)!

Markus Hadwiger, KAUST 8

Interlude: “Self-Absorption” (2)

Piecewise constant approximation, but correct integration

Markus Hadwiger, KAUST 9

not piecewise
constant ,

piecewise
constant ,

Interlude: “Self-Absorption” (3)

Piecewise constant approximation, but correct integration

Markus Hadwiger, KAUST 10

Associated Colors in Volume Rendering

Standard emission-absorption optical model
• Only one kind of particle: the same particles that absorb light, emit light

• Aha! Therefore lower absorption means lower emission as well

Light observed from (in front of) segment i (without any light behind it):

Markus Hadwiger, KAUST 11

hold fixed! (as a fixed ratio)

ImplementationImplementation

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 13

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 14

Ray Setup

Two main approaches:
• Procedural ray/box intersection

[Röttger et al., 2003], [Green, 2004]

• Rasterize bounding box
[Krüger and Westermann, 2003]

Some possibilities
• Ray start position and exit check

• Ray start position and exit position

• Ray start position and direction vector

15

Procedural Ray Setup/Termination

• Everything handled in the fragment shader / CUDA kernel

• Procedural ray / bounding box intersection

• Ray is given by camera position
and volume entry position

• Exit criterion needed

• Pro: simple and self-contained

• Con: full computational load
per-pixel/fragment

16

Rasterization-Based Ray Setup

• Fragment == ray

• Need ray start pos, direction vector

• Rasterize bounding box

• Identical for orthogonal and perspective projection!

- =

17

Object-Order Empty Space Skipping

Modify initial rasterization step

rasterize bounding box rasterize “tight" bounding geometry

Moving Into The Volume

Near clipping plane clips into front faces

Fill in holes with near clipping plane
Can use depth buffer [Scharsach et al., 2006]

Implementation

Ray setup

Loop over ray

Resample scalar value

Classification

Shading

Compositing

Markus Hadwiger, KAUST 20

Classification – Transfer Functions

During Classification the user defines the “look“ of the data.
• Which parts are transparent?

• Which parts have what color?

Classification – Transfer Functions

During Classification the user defines the “look“ of the data.
• Which parts are transparent?

• Which parts have what color?

The user defines a transfer function.

Emission RGB

Absorption A
scalar S Transfer

Function

1D Transfer Functions

texture = scalar field

transferfunction texture = [Emission RGB, Absorption A]

scalar value S

S

RGBA

T(S)
resampling

1D Transfer Functions

Applying Transfer Function: Cg Example

// Cg fragment program for post-classification

// using 3D textures

float4 main (float3 texUV : TEXCOORD0,

uniform sampler3D volume_texture,

uniform sampler1D transfer_function) :
COLOR

{

float index = tex3D(volume_texture, texUV);

float4 result = tex1D(transfer_function, index);

return result;

}

Windowing Transfer Function

Map input scalar range to output intensity range
• Select scalar range of interest

• Adjust contrast

Markus Hadwiger, KAUST 26

Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

