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Reading Assignment #6 (until Mar 12)

Read (required):
• Real-Time Volume Graphics, Chapter 2

(GPU Programming)

• Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume Illumination)

• Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Look at (optional):
• Riemannian Geometry for Scientific Visualization (notes and videos [part 1])
https://vccvisualization.org/RiemannianGeometryTutorial/



What About Volume Illumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!



Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual



Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only 
interested in points on the surface;
in marching cubes: the vertices)





Local Illumination Model: Phong Lighting Model



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

Many uses:
• Project vector onto another vector

• Project into basis (using the dual basis, see later)

• Project into tangent plane
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(standard inner product
in Cartesian coordinates)

(geometric definition,
independent of coordinates)



Gradient of the scalar field gives direction+magnitude of fastest change

Local approximation to isosurface at any point:
tangent plane = plane orthogonal to gradient

Normal of this isosurface:
normalized gradient vector
(negation is common convention)

-g

larger
scalar 
values

smaller
scalar 
values

The Gradient as Normal Vector

(only correct in Cartesian
coordinates: see later)



(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences
• Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid
• Image processing filters; e.g. Sobel (33 neighbors in 3D)

Continuous convolution filters
• Derived continuous reconstruction filters
• E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

Forward differences / backward differences
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Finite Differences

Central differences

Markus Hadwiger, KAUST 12



Central Differences

Need only two neighboring voxels per derivative

Most common method

gx = 0.5( f(x+1, y, z) – f(x-1, y, z) )

gy = 0.5( f(x, y+1, z) – f(x, y-1, z) )

gz = 0.5( f(x, y, z+1) – f(x, y, z-1) )

f(x-1, y, z) f(x+1, y, z)

f(x, y+1, z)

f(x, y-1, z)

f(x, y, z+1)

f(x, y, z-1)

on a curve 

in a volume



Gradient and Directional Derivative

Gradient        s        of scalar function                :

Directional derivative in direction    :

And therefore also:
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(only correct in Cartesian
coordinates: see later)



Gradient and Directional Derivative

Gradient        s        of scalar function                :

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:
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(only correct in Cartesian
coordinates: see later)



What about the Basis?

On the previous slide, this actually meant

It’s just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:
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Cartesian
coordinates

polar
coordinates
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Cartesian
coordinates

polar
coordinates



Gradients as Differential Forms
(1-Forms)

Gradients as Differential Forms
(1-Forms)



The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms                     takes direction vector as input, gives scalar output

In the expression of the gradient       above, all 1-forms on the right-hand side get 
the same vector as input

is simply a linear combination of the coordinate differentials
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(also “total differential” or “total derivative”)



The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept

The directional derivative and the gradient vector

The gradient vector is then defined, such that:
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(also “total differential” or “total derivative”)



Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


