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CS 247 - Scientific Visualization
Lecture 12: Scalar Field Visualization, Pt. 6
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Reading Assignment #6 (until Mar 12)

Read (required):

» Real-Time Volume Graphics, Chapter 2
(GPU Programming)

» Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume lllumination)

» Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues and eigenvectors

Look at (optional):

* Riemannian Geometry for Scientific Visualization (notes and videos [part 1])

https://vccvisualization.org/RiemannianGeometryTutorial/



What About Volume lllumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!




Local lllumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual



Local lllumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only
interested in points on the surface;
in marching cubes: the vertices)



The marching cubes algorithm

L4 ’

case 3¢ case 6¢ case /¢

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-21



Local lllumination Model: Phong Lighting Model <=

IPhong — Iambient + Idiffuse =+ Ispecular

Ambient + Diffuse + Specular

Phong Reflection



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

n
a-b = |al/|b]|| cos a-b=> ab
1=1
(geometric definition, (standard inner product
independent of coordinates) in Cartesian coordinates)

Many uses:
« Project vector onto another vector
* Project into basis (using the dual basis, see later)

« Project into tangent plane
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The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

T
g . Vf . 8f 8f 8f (only(;:_orrtect in Calrttesi)an
- - 9 ’ coordinates: see later
Ox Oy 0z
Local approximation to isosurface at any point: smaller
tangent plane = plane orthogonal to gradient scalar
-2 values
Normal of this isosurface: _
normalized gradient vector
(negation is common convention)
n — —g/|g‘ larger
scalar

values



(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences

» Cheap and quality often sufficient (2*3 neighbors in 3D) f i f
RERGRS

Discrete convolution filters on grid
 Image processing filters; e.g. Sobel (32 neighbors in 3D) ‘ ) L A
o o@ o o
Continuous convolution filters 00—
* Derived continuous reconstruction filters o000

* E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

f'(@o) f"(xo)
TR

f(il?o—Fh) = f(SC()) + h? +...

Forward differences / backward differences

f(CC() + h

S—’

— f(@o) + o(h)

—
8
.
]

f(xo)_ (Io—h) —l—O(h)

ol e
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Finite Differences

Central differences

f(xo+h) = flzo) + T T o
fleo—h) = flao) — Ly 4 L0y
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Central Differences

Need only two neighboring voxels per derivative

Most common method f(x, y+1, 7)
on a curve f(x, y, z+1)
f(x-1, v, 7) f(x+1, y, 7)
f(Xa ya Z'l)
f(X9 Y'la Z)
gx = 0'5( f(X"‘l, Y/ Z) - f(x_lr Y/ Z) )
= 0.5( £(x, y+1, z) - f£(x, y-1, .
Iy CEG yrLoE) =0 ymd ) ) in a volume

0-5( f(xr Y, Z'l'l) - f£(x, Y/ Z—l) )

Q
N
]



Gradient and Directional Derivative

Gradient V f(x,y,z) of scalar function f(x,y,7):

T
Vf(x y Z) — (af(x7y7 Z) af(x7y7 Z) af(x7y7 Z) ) (only gorrect in Cartesian
7 - ax ? ay Y aZ coordinates: see later)

Directional derivative in direction u :
Duf(x,y,z) — Vf(x,y,z) u

And therefore also:
Dy f(x,y,2) = [|Vf]| |[u]| cos O
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Gradient and Directional Derivative

Gradient V f(x,y,z) of scalar function f(x,y,7):

a X, Y, & a Xy Y, & a Xy Y, 2 ! only correct in Cartesian
Vf(x7y7z):< f(axy )7 f(ayy )7 f(azy )) (coclnyrdinatest:se(élgter)

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

d d d
Vf(xy.2) f(;;y,Z) (L f(;;y,Z) it f(;,zy,Z) K
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What about the Basis?

On the previous slide, this actually meant

d d d
V(o2 = Lo i)+ LI )+ L2 ke

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Oy
j 7 XX

Cartesian - polar
coordinates 1 coordinates W
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What about the Basis?

On the previous slide, this actually meant

d d d
V(o2 = Lo i)+ LI )+ L2 ke

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Ty,
€y € ?’

Cartesian polar
. e, .
coordinates coordinates W
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Gradients as Differential Forms

(1-Forms)




The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

2,
df = fdx+ 8§ dy + ajzf

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms d f.dx.dy.dz takes direction vector as input, gives scalar output

In the expression of the gradient df above, all 1-forms on the right-hand side get
the same vector as input

df is simply a linear combination of the coordinate differentials dx,dy,dz
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

2, d d
df:a—idx+a—§dy+a—§dz

The directional derivative and the gradient vector

Dyf = df(u)
df(u)=Vf-u

The gradient vector is then defined, such that:
Vf-u:=df(u)
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Thank you.




