A\
Kin gAbduIlahdUT Esfy;: (/(. KAUST

CS 247 - Scientific Visualization
Lecture 11: Scalar Field Visualization, Pt. 5

MarII|iadwiger, KAUST

Reading Assignment #6 (until Mar 12)

Read (required):

» Real-Time Volume Graphics, Chapter 2
(GPU Programming)

» Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume lllumination)

» Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues and eigenvectors

Look at (optional):

* Riemannian Geometry for Scientific Visualization (notes and videos [part 1])

https://vccvisualization.org/RiemannianGeometryTutorial/

From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

3D - Marching Cubes Algorithm:

Locate the surface corresponding to a user-specified iso value

1.
2. Create triangles

3. Calculate normals to the surface at each vertex
4.

Draw shaded triangles

Markus Hadwiger, KAUST

Marching Cubes

- o il I
=]
Pammy b — 4 » Foreach cell, we have 8 vertices with 2
, | possible states each (inside or outside).
N _" 1 [~ * This gives us 2° possible patterns = 256
N Y.l cases.
(I b A ° Enumerate cases to create a LUT
i 1S 4—7Q + Use symmetries to reduce problem
7 from 256 to 15 cases.

¢ / Explanations
48 - Data Visualization book, 5.3.2
= = « Marching Cubes: A high resolution 3D

/= | ‘ surface construction algorithm,
[os Lorensen & Cline, ACM SIGGRAPH 1987

Markus Hadwiger, KAUST 4

The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

« contours on planar slices, followed by

« "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
* Pieces of the isosurfaces are generated on a cell-by-cell basis.

* Similar to marching squares, a 8-bit number is computed from
the 8 signs of f(x;) on the corners of a hexahedral cell.

« The isosurface piece is looked up in a table with 256 entries.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-15

The marching cubes algorithm
How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
 rotational symmetries of the cube

« reflective symmetries of the cube

+ sign changes of f(x;)

They published a reduced set of 14") cases shown on the next
slides where

+ white circles indicate positive signs of f(x;)
« the positive side of the isosurface is drawn in red, the negative
side in blue.

*) plus an unnecessary "case 14" which is a symmetric image of case 11.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

case 4

Ronald Peikert

The marching cubes algorithm

case 1

O
case 5 case 6

SciVis 2009 - Contouring and Isosurfaces

2-17

The marching cubes algorithm

o,
case 10 case 11

o;
case 12 case 13

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-18

The marching cubes algorithm

Do the pieces fit together?

« The correct isosurfaces of the trilinear
interpolant would fit (trilinear reduces to
bilinear on the cell interfaces)

* but the marching cubes polygons don't
necessarily fit.

Example
« case 10, on top of
» case 3 (rotated, signs changed)

have matching signs at nodes but polygons
don't fit.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

case 3

2-19

The marching cubes algorithm

L4 ’

case 3¢ case 6¢ case /¢

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-21

The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:
 build a table of the 28 cases
- derive a table of the 256 cases, containing info on

— intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0,2), (0,4), (1,3), (1,5)

— triangles based on these points, e.g. for case 3/256:
(0,2,1), (1,3,2).

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-23

The marching cubes algorithm

Loop over cells:
- find sign of f(x;) for the 8 corner nodes, giving 8-bit integer
* use as index into (256 case) table

 find intersection points on edges listed in table, using linear
interpolation

« generate triangles according to table

Post-processing steps:

» connect triangles (share vertices)

« compute normal vectors
— by averaging triangle normals (problem: thin triangles!)
— by estimating the gradient of the field f(x;)(better)

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

2-24

The marching cubes algorithm

Loop over cells:
- find sign of f(x;) for the 8 corner nodes, giving 8-bit integer
* use as index into (256 case) table

 find intersection points on edges listed in table, using linear
interpolation

« generate triangles according to table

Post-processing steps:

» connect triangles (share vertices)
« compute normal vectors

— by averaging triangle normals (problem: thin triangles!)
— by estimating the gradient of the field f (x;)(better)

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

2-24

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

2
x1,yl,z1
coords for %3 . v3. 23 struct face 1
vertex 1 Y3, 23— float verts[3][3]
x1l,yl,z1 — DataType val;
x3,y3,2z3 face 2 GL_CCW
x4,y4,z4 4 (if orientable

— manifold)

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 14

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

2
5
vertex list face list
x1l,y1l, (z1) 1,2,3 3
x2,y2, (z2) 1,3,4
coords for x3,y3, (23) 2.1,5
vertex 1 x4,y4, (z4) GL_CCW

(if orientable
manifold)

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)

Markus Hadwiger, KAUST 15

Orientability (2-manifold embedded in 3D)

not orientable

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

Moebius strip

Triangle meshes (only one side!)
 Edges
» Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)
(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side) 2
« Triangles
» Consistent front side vs. back side 3
* Normal vector; or ordering of vertices (CCW/CW) 1
 See also: “right-hand rule” GL_CCW

Markus Hadwiger, KAUST 16

Iso-Surface / Volume

Hlumination

What About Volume lllumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!

Local lllumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

Local lllumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only
interested in points on the surface;
in marching cubes: the vertices)

Local lllumination Model: Phong Lighting Model <=

IPhong — Iambient + Idiffuse =+ Ispecular

Ambient + Diffuse + Specular

Phong Reflection

Local lllumination Model: Phong Lighting Model <=

IPhong — Iambient + Idiffuse =+ Ispecular

Ambient Diffuse Specular Combined

Local Shading Equations

Standard volume shading adapts surface shading
Most commonly Blinn/Phong model

But what about the "surface" normal vector?

n
4

diffuse reflection specular reflection

AR
=
=

Local lllumination Model: Phong Lighting Model ¢

IPhong — Iambient + Idiffuse =+ Ispecular

Iambient — ka, Ma, Ia,

Local lllumination Model: Phong Lighting Model ¢=

IPhong — Iambient + Idiffuse =+ Ispecular

e

e o
4 f

Liiffuse = kg My 14 cos ¥ if
kd Md Id max((n- l),)

-
2

The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

n
a-b = |al/|b]|| cos a-b=> ab
1=1
(geometric definition, (standard inner product
independent of coordinates) in Cartesian coordinates)

Many uses:
« Project vector onto another vector
* Project into basis (using the dual basis, see later)

« Project into tangent plane

Markus Hadwiger, KAUST 26

Local lllumination Model: Phong Lighting Model «=

IPhong — Iambient + Idiffuse =+ Ispecular

Ispecular — ks Mg 1 cos’’ p, 1 p
ks Mg Ig (r-v)"

must also clamp!

A
N | 3

Local lllumination Model: Phong Lighting Model ¢=

IPhong

Ispecular

h

X

- 1

-1

— Iambient =+ Idiffuse =+ Ispecular

§m% |
%ﬁﬂﬂ%@-m

ksM I (h Il)

must also clamp!

half-way vector

The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

T
g . Vf . 8f 8f 8f (only(;:_orrtect in Calrttesi)an
- - 9 ’ coordinates: see later
Ox Oy 0z
Local approximation to isosurface at any point: smaller
tangent plane = plane orthogonal to gradient scalar
-2 values
Normal of this isosurface: _
normalized gradient vector
(negation is common convention)
n — —g/|g‘ larger
scalar

values

Gradient and Directional Derivative

Gradient V f(x,y,z) of scalar function f(x,y,7):

T
Vf(x y Z) — (af(x7y7 Z) af(x7y7 Z) af(x7y7 Z)) (only gorrect in Cartesian
7 - ax ? ay Y aZ coordinates: see later)

Directional derivative in direction u :
Duf(x,y,z) — Vf(x,y,z) u

And therefore also:
Dy f(x,y,2) = [|Vf]| |[u]| cos O

Markus Hadwiger, KAUST 30

Gradient and Directional Derivative

Gradient V f(x,y,z) of scalar function f(x,y,7):

a X, Y, & a Xy Y, & a Xy Y, 2 ! only correct in Cartesian
Vf(x7y7z):< f(axy)7 f(ayy)7 f(azy)) (coclnyrdinatest:se(élgter)

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

d d d
Vf(xy.2) f(;;y,Z) (L f(;;y,Z) it f(;,zy,Z) K

Markus Hadwiger, KAUST 31

(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences

» Cheap and quality often sufficient (2*3 neighbors in 3D) f i f
RERGRS

Discrete convolution filters on grid
 Image processing filters; e.g. Sobel (32 neighbors in 3D) ‘) L A
o o@ o o
Continuous convolution filters 00—
* Derived continuous reconstruction filters o000

* E.g., the cubic B-spline and its derivatives (43 neighbors)

Finite Differences

Obtain first derivative from Taylor expansion

f'(@o) f"(xo)
TR

D DE ALY

f(il?o—Fh) = f(SC()) —+ h2 + ...

Forward differences / backward differences

f(CC() + h

S—’

— f(@o) + o(h)

—
8
.
]

f(xo)_ (Io—h) —l—O(h)

ol e

Markus Hadwiger, KAUST 33

Finite Differences

Central differences

flxo+h) = f(zo) + T + =
fo—h) = flao) - L0+ L5202 4 o)

Markus Hadwiger, KAUST 34

Central Differences

Need only two neighboring voxels per derivative

Most common method f(x, y+1, 7)
on a curve f(x, y, z+1)
f(x-1, v, 7) f(x+1, y, 7)
f(Xa ya Z'l)
f(X9 Y'la Z)
gx = 0'5(f(X"‘l, Y/ Z) - f(x_lr Y/ Z))
= 0.5(£(x, y+1, z) - f£(x, y-1, .
Iy CEG yrLoE) =0 ymd)) in a volume

0-5(f(xr Y, Z'l'l) - f£(x, Y/ Z—l))

Q
N
]

Thank you.

