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Reading Assignment #6 (until Mar 12)

Read (required):
• Real-Time Volume Graphics, Chapter 2

(GPU Programming)

• Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume Illumination)

• Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Look at (optional):
• Riemannian Geometry for Scientific Visualization (notes and videos [part 1])
https://vccvisualization.org/RiemannianGeometryTutorial/



From 2D to 3D (Domain)
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3D - Marching Cubes Algorithm:

1. Locate the surface corresponding to a user-specified iso value
2. Create triangles
3. Calculate normals to the surface at each vertex
4. Draw shaded triangles

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines



Marching Cubes
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• For each cell, we have 8 vertices with 2 
possible states each (inside or outside).

• This gives us 28 possible patterns = 256 
cases.

• Enumerate cases to create a LUT
• Use symmetries to reduce problem 

from 256 to 15 cases.

Explanations
• Data Visualization book, 5.3.2
• Marching Cubes: A high resolution 3D 

surface construction algorithm,
Lorensen & Cline, ACM SIGGRAPH 1987





















Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, …

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 14

struct face
float verts[3][3]
DataType val;

x1,y1,z1 
x2,y2,z2
x3,y3,z3
x1,y1,z1 
x3,y3,z3
x4,y4,z4

...

face 1

face 2

coords for 
vertex 1

1

2

3

4
GL_CCW
(if orientable

manifold)



Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)
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x1,y1,(z1) 
x2,y2,(z2)
x3,y3,(z3)
x4,y4,(z4) 

...

vertex list face list
1,2,3 
1,3,4
2,1,5

...

coords for 
vertex 1

1

2

3

4

5

GL_CCW
(if orientable

manifold)



Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:
Possible to assign consistent normal vector orientation

Triangle meshes

• Edges
• Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)

(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)

• Triangles
• Consistent front side vs. back side

• Normal vector; or ordering of vertices (CCW/CW)

• See also: “right-hand rule”
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Moebius strip
(only one side!)

not orientable

1

2

3

4
GL_CCW



Iso-Surface / Volume
Illumination

Iso-Surface / Volume
Illumination



What About Volume Illumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!



Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual



Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only 
interested in points on the surface;
in marching cubes: the vertices)



Local Illumination Model: Phong Lighting Model



Local Illumination Model: Phong Lighting Model



Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?

n
l l

n

v

h r

specular reflectiondiffuse reflection



Local Illumination Model: Phong Lighting Model



Local Illumination Model: Phong Lighting Model



The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

Many uses:
• Project vector onto another vector

• Project into basis (using the dual basis, see later)

• Project into tangent plane
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(standard inner product
in Cartesian coordinates)

(geometric definition,
independent of coordinates)



Local Illumination Model: Phong Lighting Model

must also clamp!



Local Illumination Model: Phong Lighting Model

half-way vector

must also clamp!



Gradient of the scalar field gives direction+magnitude of fastest change

Local approximation to isosurface at any point:
tangent plane = plane orthogonal to gradient

Normal of this isosurface:
normalized gradient vector
(negation is common convention)

-g

larger
scalar 
values

smaller
scalar 
values

The Gradient as Normal Vector

(only correct in Cartesian
coordinates: see later)



Gradient and Directional Derivative

Gradient        s        of scalar function                :

Directional derivative in direction    :

And therefore also:
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(only correct in Cartesian
coordinates: see later)



Gradient and Directional Derivative

Gradient        s        of scalar function                :

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:
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(only correct in Cartesian
coordinates: see later)



(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences
• Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid
• Image processing filters; e.g. Sobel (33 neighbors in 3D)

Continuous convolution filters
• Derived continuous reconstruction filters
• E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

Forward differences / backward differences
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Finite Differences

Central differences
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Central Differences

Need only two neighboring voxels per derivative

Most common method

gx = 0.5( f(x+1, y, z) – f(x-1, y, z) )

gy = 0.5( f(x, y+1, z) – f(x, y-1, z) )

gz = 0.5( f(x, y, z+1) – f(x, y, z-1) )

f(x-1, y, z) f(x+1, y, z)

f(x, y+1, z)

f(x, y-1, z)

f(x, y, z+1)

f(x, y, z-1)

on a curve 

in a volume



Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


