
CS 247 – Scientific Visualization
Lecture 11: Scalar Field Visualization, Pt. 5

Markus Hadwiger, KAUST

2

Reading Assignment #6 (until Mar 12)

Read (required):
• Real-Time Volume Graphics, Chapter 2

(GPU Programming)

• Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume Illumination)

• Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Look at (optional):
• Riemannian Geometry for Scientific Visualization (notes and videos [part 1])
https://vccvisualization.org/RiemannianGeometryTutorial/

From 2D to 3D (Domain)

Markus Hadwiger, KAUST 3

3D - Marching Cubes Algorithm:

1. Locate the surface corresponding to a user-specified iso value
2. Create triangles
3. Calculate normals to the surface at each vertex
4. Draw shaded triangles

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

Marching Cubes

Markus Hadwiger, KAUST 4

• For each cell, we have 8 vertices with 2
possible states each (inside or outside).

• This gives us 28 possible patterns = 256
cases.

• Enumerate cases to create a LUT
• Use symmetries to reduce problem

from 256 to 15 cases.

Explanations
• Data Visualization book, 5.3.2
• Marching Cubes: A high resolution 3D

surface construction algorithm,
Lorensen & Cline, ACM SIGGRAPH 1987

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, …

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 14

struct face
float verts[3][3]
DataType val;

x1,y1,z1
x2,y2,z2
x3,y3,z3
x1,y1,z1
x3,y3,z3
x4,y4,z4

...

face 1

face 2

coords for
vertex 1

1

2

3

4
GL_CCW
(if orientable

manifold)

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)

Markus Hadwiger, KAUST 15

x1,y1,(z1)
x2,y2,(z2)
x3,y3,(z3)
x4,y4,(z4)

...

vertex list face list
1,2,3
1,3,4
2,1,5

...

coords for
vertex 1

1

2

3

4

5

GL_CCW
(if orientable

manifold)

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:
Possible to assign consistent normal vector orientation

Triangle meshes

• Edges
• Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)

(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)

• Triangles
• Consistent front side vs. back side

• Normal vector; or ordering of vertices (CCW/CW)

• See also: “right-hand rule”

Markus Hadwiger, KAUST 16

Moebius strip
(only one side!)

not orientable

1

2

3

4
GL_CCW

Iso-Surface / Volume
Illumination

Iso-Surface / Volume
Illumination

What About Volume Illumination?

Crucial for perceiving shape and
depth relationships

this is a scalar volume (3D distance field)!

Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

Local Illumination in Volumes

Interaction between light source and point in the volume

Local shading equation; evaluate at each point along a ray

Use color from transfer function as
material color; multiply with light intensity

This is the new "emissive" color in the
emission/absorption optical model

Composite as usual

(for an isosurface, we are only
interested in points on the surface;
in marching cubes: the vertices)

Local Illumination Model: Phong Lighting Model

Local Illumination Model: Phong Lighting Model

Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?

n
l l

n

v

h r

specular reflectiondiffuse reflection

Local Illumination Model: Phong Lighting Model

Local Illumination Model: Phong Lighting Model

The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

Many uses:
• Project vector onto another vector

• Project into basis (using the dual basis, see later)

• Project into tangent plane

Markus Hadwiger, KAUST 26

(standard inner product
in Cartesian coordinates)

(geometric definition,
independent of coordinates)

Local Illumination Model: Phong Lighting Model

must also clamp!

Local Illumination Model: Phong Lighting Model

half-way vector

must also clamp!

Gradient of the scalar field gives direction+magnitude of fastest change

Local approximation to isosurface at any point:
tangent plane = plane orthogonal to gradient

Normal of this isosurface:
normalized gradient vector
(negation is common convention)

-g

larger
scalar
values

smaller
scalar
values

The Gradient as Normal Vector

(only correct in Cartesian
coordinates: see later)

Gradient and Directional Derivative

Gradient s of scalar function :

Directional derivative in direction :

And therefore also:

Markus Hadwiger, KAUST 30

(only correct in Cartesian
coordinates: see later)

Gradient and Directional Derivative

Gradient s of scalar function :

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

Markus Hadwiger, KAUST 31

(only correct in Cartesian
coordinates: see later)

(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences
• Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid
• Image processing filters; e.g. Sobel (33 neighbors in 3D)

Continuous convolution filters
• Derived continuous reconstruction filters
• E.g., the cubic B-spline and its derivatives (43 neighbors)

Finite Differences

Obtain first derivative from Taylor expansion

Forward differences / backward differences

Markus Hadwiger, KAUST 33

Finite Differences

Central differences

Markus Hadwiger, KAUST 34

Central Differences

Need only two neighboring voxels per derivative

Most common method

gx = 0.5(f(x+1, y, z) – f(x-1, y, z))

gy = 0.5(f(x, y+1, z) – f(x, y-1, z))

gz = 0.5(f(x, y, z+1) – f(x, y, z-1))

f(x-1, y, z) f(x+1, y, z)

f(x, y+1, z)

f(x, y-1, z)

f(x, y, z+1)

f(x, y, z-1)

on a curve

in a volume

Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

