
CS 247 – Scientific Visualization
Lecture 10: Scalar Field Visualization, Pt. 4

Markus Hadwiger, KAUST

2

Reading Assignment #5 (until Mar 5)

Read (required):
• Gradients of scalar-valued functions

https://en.wikipedia.org/wiki/Gradient

• Critical points
https://en.wikipedia.org/wiki/Critical_point_(mathematics)

• Multivariable derivatives and differentials
https://en.wikipedia.org/wiki/Total_derivative

https://en.wikipedia.org/wiki/Differential_of_a_function#
Differentials_in_several_variables

https://en.wikipedia.org/wiki/Hessian_matrix

• Dot product, inner product (more general)
https://en.wikipedia.org/wiki/Dot_product

https://en.wikipedia.org/wiki/Inner_product_space

Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

“Asymptotic decider”: resolve ambiguous configurations (6 and 9) by
comparing specific iso-value with critical value (scalar value at critical point)

critical point
(saddle point)

here, the critical
value is 2/3=0.666…

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation

Markus Hadwiger, KAUST 4

Interpolate function at (fractional) position :

Bi-Linear Interpolation

Markus Hadwiger, KAUST 5

Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?

if denominator is zero, bi-linear interpolation has degenerated
to linear interpolation (or const)! (also means: no isolated critical points!)

Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point

Markus Hadwiger, KAUST

Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point

Markus Hadwiger, KAUST

Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?

Markus Hadwiger, KAUST

critical point
(saddle point)

Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?

Markus Hadwiger, KAUST

critical point
(saddle point)

Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)

11Markus Hadwiger, KAUST

Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)

12Markus Hadwiger, KAUST

Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

13

degenerate means determinant = 0 (at least one eigenvalue = 0);
bi-linear is simple: a = 0 means degenerated to
linear anyway: no critical point at all! (except constant function)
(but with more than one cell: can have max or min at vertices)

Interlude: Implicit Function Theorem

When can I write an implicit function in such that it is the graph of a
function at least locally?

That is: is this implicitly described function an n-manifold
embedded in ? (with local coordinates in)

Theorem: if m x m Jacobian matrix is invertible

(easier for scalar field: check if gradient of is non-zero)

See https://en.wikipedia.org/wiki/Implicit_function_theorem

General result: constant rank theorem

Markus Hadwiger, KAUST 14

From 2D to 3D (Domain)

Markus Hadwiger, KAUST 15

3D - Marching Cubes Algorithm:

1. Locate the surface corresponding to a user-specified iso value
2. Create triangles
3. Calculate normals to the surface at each vertex
4. Draw shaded triangles

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

Marching Cubes

Markus Hadwiger, KAUST 16

• For each cell, we have 8 vertices with 2
possible states each (inside or outside).

• This gives us 28 possible patterns = 256
cases.

• Enumerate cases to create a LUT
• Use symmetries to reduce problem

from 256 to 15 cases.

Explanations
• Data Visualization book, 5.3.2
• Marching Cubes: A high resolution 3D

surface construction algorithm,
Lorensen & Cline, ACM SIGGRAPH 1987

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, …

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 25

struct face
float verts[3][3]
DataType val;

x1,y1,z1
x2,y2,z2
x3,y3,z3
x1,y1,z1
x3,y3,z3
x4,y4,z4

...

face 1

face 2

coords for
vertex 1

1

2

3

4
GL_CCW
(if orientable

manifold)

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)

Markus Hadwiger, KAUST 26

x1,y1,(z1)
x2,y2,(z2)
x3,y3,(z3)
x4,y4,(z4)

...

vertex list face list
1,2,3
1,3,4
2,1,5

...

coords for
vertex 1

1

2

3

4

5

GL_CCW
(if orientable

manifold)

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:
Possible to assign consistent normal vector orientation

Triangle meshes

• Edges
• Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)

(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)

• Triangles
• Consistent front side vs. back side

• Normal vector; or ordering of vertices (CCW/CW)

• See also: “right-hand rule”

Markus Hadwiger, KAUST 27

Moebius strip
(only one side!)

not orientable

1

2

3

4
GL_CCW

Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

