A\
Kin gAbduIlahdUT Esfy;: (/(. KAUST

CS 247 - Scientific Visualization
Lecture 10: Scalar Field Visualization, Pt. 4

MarII|iadwiger, KAUST

Reading Assignment #5 (until Mar 5)

Read (required):
» Gradients of scalar-valued functions
https://en.wikipedia.org/wiki/Gradient
* Critical points
https://en.wikipedia.org/wiki/Critical point (mathematics)
 Multivariable derivatives and differentials

https://en.wikipedia.org/wiki/Total derivative

https://en.wikipedia.org/wiki/Differential of a function#
Differentials in several variables

https://en.wikipedia.org/wiki/Hessian matrix

* Dot product, inner product (more general)
https://en.wikipedia.org/wiki/Dot product
https://en.wikipedia.org/wiki/Inner product space

Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

critical point
(saddle point)

here, the critical
value is 2/3=0.666...

“‘Asymptotic decider”: resolve ambiguous configurations (6 and 9) by
comparing specific iso-value with critical value (scalar value at critical point)

Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

o ‘= X1 — Lxlj o) [0.0, 1.0)
O :=Xxp — _XZJ Oh € [OO, 10)

and 2x2 sample values
Vor Vil
Voo V10

Compute: f(0,00)

Markus Hadwiger, KAUST 4

Bi-Linear Interpolation

Interpolate function at (fractional) position (¢,) :

flog,00) =0 (1—0p)] [VOI vu} [(1;1051)]

Voo V10

=(1—o0yq)(1—0)voo+ a1 (1 —a)vip+ (1 —ay)opvor + 00y

Markus Hadwiger, KAUST 5

Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

df(a,

floa, o) = (vio —vo0) + 02(voo +vi1 —vio —vo1)
8061

Jdf (o, o

f(aolcz o (vor —voo) + @1 (voo +vi1r —vio —vo1)

Where are lines of constant value / critical points?

af(oq,ocz) —0- 0 = Voo — V10 o g
da ' Voo + V11 — V10 — Vol i
af(alaaZ) —0- o = Voo — Vo1
dap Voo + Vi1 — V10 — Vol

if denominator is zero, bi-linear interpolation has degenerated
to linear interpolation (or const)! (also means: no isolated critical points!)

Bi-Linear Interpolation: Critical Points

Compute gradient N
pute g \‘\g\ N
Note that isolines are TN
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point

Markus Hadwiger, KAUST

Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point

Markus Hadwiger, KAUST

Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

df(a,

floa, o) = (vio —vo0) + 02(voo +vi1 —vio —vo1)
8051

Jdf (o, o

f(aolcz o (vor —voo) + @1 (voo +vi1r —vio —vo1)

critical point
(saddle point)

Where are lines of constant value / critical points?

df(oy,) 0: oy Voo — V10

da ' Voo -+ Vi1 — V10 — Vo1
df(og,00) 0: o — V0o — Vo1

d Voo + Vi1 — vio — Vo1

Markus Hadwiger, KAUST (xl

Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

df(a,

floa, o) = (vio —vo0) + 02(voo +vi1 —vio —vo1)
8061

Jdf (o, o

f(aolcz o (vor —voo) + @1 (voo +vi1r —vio —vo1)

critical point
(saddle point)

Where are lines of constant value / critical points?

af(al) 062) —0- o = Voo — V10 0% 50

8061 : VOO+V11 — V10 — V01 i : az
af(alaaZ) —0- o = Voo — Vo1

J Voo T V11 — V10 — Vol

Markus Hadwiger, KAUST 051

Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

[0% f 0% f 0
do? dadop | a — _ _
azjlc azf — |:a O] a=voo+Vvir — V1o — Vol
| dapday Ja;

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

Alz—aand/lzza

o[l

(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)

Markus Hadwiger, KAUST 11

Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

[0% f *f 0

da? dada a _

a2ajlc al2f ? = |:a O] a=voo —l—vll — V10 — V01
| dapday Ja;

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

A

o[l

(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)

—aand L =a

Markus Hadwiger, KAUST 12

Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

[0% f *f 0

oo’ dodo a _

ag‘} alzfz =1, 0 a=voy+Vvii —vio— Vol
| dapday Ja;

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

A

o[l

degenerate means determinant = 0 (at least one eigenvalue = 0);
bi-linear is simple: a = 0 means degenerated to

linear anyway: no critical point at all! (except constant function)
(but with more than one cell: can have max or min at vertices)

—aand L =a

13

Interlude: Implicit Function Theorem

When can | write an implicit function in R*™" such that it is the graph of a
function f: R" — R at least locally?

That is: is this implicitly described function an n-manifold
embedded in R"™" ? (with local coordinates in R")

G(f) :={(x, f(x))|x € R"} C R" x R" ~ R""

Theorem: if m x m Jacobian matrix is invertible

(easier for scalar field: check if gradient of f is non-zero)

See https://en.wikipedia.org/wiki/Implicit function_ theorem

General result; constant rank theorem

Markus Hadwiger, KAUST 14

From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

3D - Marching Cubes Algorithm:

Locate the surface corresponding to a user-specified iso value

1.
2. Create triangles

3. Calculate normals to the surface at each vertex
4.

Draw shaded triangles

Markus Hadwiger, KAUST 15

Marching Cubes

- o il I
=]
Pammy b — 4 » Foreach cell, we have 8 vertices with 2
, | possible states each (inside or outside).
N _" 1 [~ * This gives us 2° possible patterns = 256
N Y.l cases.
(I b A ° Enumerate cases to create a LUT
i 1S 4—7Q + Use symmetries to reduce problem
7 from 256 to 15 cases.

¢ / Explanations
48 - Data Visualization book, 5.3.2
= = « Marching Cubes: A high resolution 3D

/= | ‘ surface construction algorithm,
[os Lorensen & Cline, ACM SIGGRAPH 1987

Markus Hadwiger, KAUST 16

The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

« contours on planar slices, followed by

« "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
* Pieces of the isosurfaces are generated on a cell-by-cell basis.

* Similar to marching squares, a 8-bit number is computed from
the 8 signs of f(x;) on the corners of a hexahedral cell.

« The isosurface piece is looked up in a table with 256 entries.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-15

The marching cubes algorithm
How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
 rotational symmetries of the cube

« reflective symmetries of the cube

+ sign changes of f(x;)

They published a reduced set of 14") cases shown on the next
slides where

+ white circles indicate positive signs of f(x;)
« the positive side of the isosurface is drawn in red, the negative
side in blue.

*) plus an unnecessary "case 14" which is a symmetric image of case 11.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

case 4

Ronald Peikert

The marching cubes algorithm

case 1

O
case 5 case 6

SciVis 2009 - Contouring and Isosurfaces

2-17

The marching cubes algorithm

o,
case 10 case 11

o;
case 12 case 13

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-18

The marching cubes algorithm

Do the pieces fit together?

« The correct isosurfaces of the trilinear
interpolant would fit (trilinear reduces to
bilinear on the cell interfaces)

* but the marching cubes polygons don't
necessarily fit.

Example
« case 10, on top of
» case 3 (rotated, signs changed)

have matching signs at nodes but polygons
don't fit.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

case 3

2-19

The marching cubes algorithm

L4 ’

case 3¢ case 6¢ case /¢

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-21

The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:
 build a table of the 28 cases
- derive a table of the 256 cases, containing info on

— intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0,2), (0,4), (1,3), (1,5)

— triangles based on these points, e.g. for case 3/256:
(0,2,1), (1,3,2).

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-23

The marching cubes algorithm

Loop over cells:
- find sign of f(x;) for the 8 corner nodes, giving 8-bit integer
* use as index into (256 case) table

 find intersection points on edges listed in table, using linear
interpolation

« generate triangles according to table

Post-processing steps:

» connect triangles (share vertices)

« compute normal vectors
— by averaging triangle normals (problem: thin triangles!)
— by estimating the gradient of the field f(x;)(better)

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

2-24

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

2
x1,yl,z1
coords for %3 . v3. 23 struct face 1
vertex 1 Y3, 23— float verts[3][3]
x1l,yl,z1 — DataType val;
x3,y3,2z3 face 2 GL_CCW
x4,y4,z4 4 (if orientable

— manifold)

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 25

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

2
5
vertex list face list
x1l,y1l, (z1) 1,2,3 3
x2,y2, (z2) 1,3,4
coords for x3,y3, (23) 2.1,5
vertex 1 x4,y4, (z4) GL_CCW

(if orientable
manifold)

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)

Markus Hadwiger, KAUST 26

Orientability (2-manifold embedded in 3D)

not orientable

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

Moebius strip

Triangle meshes (only one side!)
 Edges
» Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)
(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side) 2
« Triangles
» Consistent front side vs. back side 3
* Normal vector; or ordering of vertices (CCW/CW) 1
 See also: “right-hand rule” GL_CCW

Markus Hadwiger, KAUST 27

Thank you.

