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Reading Assignment #5 (until Mar 5)

Read (required):
• Gradients of scalar-valued functions

https://en.wikipedia.org/wiki/Gradient

• Critical points
https://en.wikipedia.org/wiki/Critical_point_(mathematics)

• Multivariable derivatives and differentials
https://en.wikipedia.org/wiki/Total_derivative

https://en.wikipedia.org/wiki/Differential_of_a_function#
Differentials_in_several_variables

https://en.wikipedia.org/wiki/Hessian_matrix

• Dot product, inner product (more general)
https://en.wikipedia.org/wiki/Dot_product

https://en.wikipedia.org/wiki/Inner_product_space



Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

“Asymptotic decider”: resolve ambiguous configurations (6 and 9) by
comparing specific iso-value with critical value (scalar value at critical point)

critical point
(saddle point)

here, the critical
value is 2/3=0.666…



Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation
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Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?

if denominator is zero, bi-linear interpolation has degenerated
to linear interpolation (or const)! (also means: no isolated critical points!)



Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point
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Bi-Linear Interpolation: Critical Points

Compute gradient
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gradient is smaller
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Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?
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critical point
(saddle point)



Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?
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critical point
(saddle point)



Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)
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Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)
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degenerate means determinant = 0 (at least one eigenvalue = 0);
bi-linear is simple: a = 0 means degenerated to
linear anyway: no critical point at all! (except constant function)
(but with more than one cell: can have max or min at vertices)



Interlude: Implicit Function Theorem

When can I write an implicit function in           such that it is the graph of a 
function                    at least locally?

That is: is this implicitly described function an n-manifold
embedded in          ? (with local coordinates in     )

Theorem: if m x m Jacobian matrix is invertible

(easier for scalar field: check if gradient of    is non-zero)

See https://en.wikipedia.org/wiki/Implicit_function_theorem

General result: constant rank theorem
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From 2D to 3D (Domain)
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3D - Marching Cubes Algorithm:

1. Locate the surface corresponding to a user-specified iso value
2. Create triangles
3. Calculate normals to the surface at each vertex
4. Draw shaded triangles

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines



Marching Cubes
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• For each cell, we have 8 vertices with 2 
possible states each (inside or outside).

• This gives us 28 possible patterns = 256 
cases.

• Enumerate cases to create a LUT
• Use symmetries to reduce problem 

from 256 to 15 cases.

Explanations
• Data Visualization book, 5.3.2
• Marching Cubes: A high resolution 3D 

surface construction algorithm,
Lorensen & Cline, ACM SIGGRAPH 1987



















Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, …

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately
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struct face
float verts[3][3]
DataType val;

x1,y1,z1 
x2,y2,z2
x3,y3,z3
x1,y1,z1 
x3,y3,z3
x4,y4,z4

...

face 1

face 2

coords for 
vertex 1

1

2

3

4
GL_CCW
(if orientable

manifold)



Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)
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x1,y1,(z1) 
x2,y2,(z2)
x3,y3,(z3)
x4,y4,(z4) 

...

vertex list face list
1,2,3 
1,3,4
2,1,5

...

coords for 
vertex 1

1

2

3

4

5

GL_CCW
(if orientable

manifold)



Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:
Possible to assign consistent normal vector orientation

Triangle meshes

• Edges
• Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)

(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)

• Triangles
• Consistent front side vs. back side

• Normal vector; or ordering of vertices (CCW/CW)

• See also: “right-hand rule”
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Moebius strip
(only one side!)

not orientable

1

2

3

4
GL_CCW



Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


