

KAUST

CS 247 – Scientific Visualization Lecture 8: Scalar Field Visualization, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #4 (until Feb 26)

Read (required):

• Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive (*Terminology, Types of Light Sources, Gradient-Based Illumination, Local Illumination Models*)

• Paper:

Marching Cubes: A high resolution 3D surface construction algorithm, Bill Lorensen and Harvey Cline, ACM SIGGRAPH 1987 [> 18,600 citations and counting...]

https://dl.acm.org/doi/10.1145/37402.37422

Read (optional):

• Paper:

Flying Edges, William Schroeder et al., IEEE LDAV 2015

```
https://ieeexplore.ieee.org/document/7348069
```

Scalar Fields

Contours

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^n : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

Markus Hadwiger, KAUST

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{x}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

Contours in a quadrangle cell

• $\tilde{f}(x_i) < 0$ • $\tilde{f}(x_i) > 0$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

Contours in a quadrangle cell

• $f(x_i) < c$ • $f(x_i) \ge c$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

Contours in a quadrangle cell

• $f(x_i) \le c$ • $f(x_i) > c$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

Orientability (1-manifold embedded in 2D)

Orientability of 1-manifold:

Possible to assign consistent left/right orientation

Iso-contours

- Consistent side for scalar values...
 - greater than iso-value (e.g, *left* side)
 - less than iso-value (e.g., *right* side)
- Use consistent ordering of vertices (e.g., larger vertex index is "tip" of arrow; if (0,1) points "up", "left" is left, ...)

not orientable

Moebius strip (only one side!)

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

Triangle meshes

- Edges ۲
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2)) on one side of edge, (1,3,4) on the other side)
- Triangles ۲
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

GL CCW

3

Moebius strip

(only one side!)

not orientable

Marching Squares Example

Marching Squares Example

contour levels

$$---4$$

 $---4?$
 $---6-\varepsilon$
 $---8-\varepsilon$
 $---8+\varepsilon$

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

Sample Locations and Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

$\alpha_1 := x_1 - \lfloor x_1 \rfloor$	$\alpha_1 \in [0.0, 1.0)$
$\alpha_2 := x_2 - x_2 $	$lpha_2 \in [0.0, 1.0)$

Linear Interpolation / Convex Combinations

Linear interpolation in 1D:

$$f(\boldsymbol{\alpha}) = (1 - \boldsymbol{\alpha})v_1 + \boldsymbol{\alpha}v_2$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

 $f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \boldsymbol{\alpha}_1 v_1 + \boldsymbol{\alpha}_2 v_2 \qquad \qquad f(\boldsymbol{\alpha}) = v_1 + \boldsymbol{\alpha}(v_2 - v_1)$ $\alpha = \alpha_2$ $\alpha_1 + \alpha_2 = 1$

Line segment: $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Markus Hadwiger

Ambiguities of contours

What is the **correct** contour of *c*=4?

Two possibilities, both are orientable:

- connect high values _____
- connect low values

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Ronald Peikert

Sample Locations and Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

$\alpha_1 := x_1 - \lfloor x_1 \rfloor$	$\alpha_1 \in [0.0, 1.0)$
$\alpha_2 := x_2 - x_2 $	$lpha_2 \in [0.0, 1.0)$

Sample Locations and Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Ambiguities of contours

What is the **correct** contour of *c*=4?

Two possibilities, both are orientable:

- connect high values _____
- connect low values

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Ronald Peikert

Bi-Linear Interpolation

Consider area between 2x2 adjacent samples

Example: 1.0 at top-left and bottom-right, 0.0 at bottom-left, 0.5 at top-right

Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

here, the critical value is 2/3=0.666...

"Asymptotic decider": resolve ambiguous configurations (6 and 9) by comparing specific iso-value with critical value (scalar value at critical point)

Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are farther apart where gradient is smaller

Note the horizontal and vertical lines where gradient becomes vertical/horizontal

Note the critical point

Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are farther apart where gradient is smaller

Note the horizontal and vertical lines where gradient becomes vertical/horizontal

Note the critical point

Markus Hadwiger, KAUST

Interlude: Implicit Function Theorem

When can I write an implicit function in \mathbb{R}^{n+m} such that it is the graph of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ at least locally?

That is: is this implicitly described function an *n*-manifold embedded in \mathbb{R}^{n+m} ? (with local coordinates in \mathbb{R}^n)

$$G(f) := \{ (x, f(x)) | x \in \mathbb{R}^n \} \subset \mathbb{R}^n \times \mathbb{R}^m \simeq \mathbb{R}^{n+m}$$

Theorem: if $m \ge m$ Jacobian matrix is invertible (easier for scalar field: check if gradient of f is non-zero)

See https://en.wikipedia.org/wiki/Implicit_function_theorem General result: constant rank theorem

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama