
CS 247 – Scientific Visualization
Lecture 6: Data Representation, Pt. 3:

Structured and Unstructured Grids

Markus Hadwiger, KAUST

2

Reading Assignment #3 (until Feb 12)

Read (required):
• Data Visualization book, finish Chapter 3 (read starting with 3.6)

• Data Visualization book, Chapter 5 until 5.3 (inclusive)

Data RepresentationData Representation

© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic

building blocks) they are constructed from and in
the way the topological information is given

scattered uniform rectilinear structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures

• Topology
– Properties of geometric shapes that remain

unchanged even when under distortion

Same geometry (vertex positions), different topology (connectivity)

© Weiskopf/Machiraju/Möller

Data Structures

• Topologically equivalent
– Things that can be transformed into each other by

stretching and squeezing, without tearing or
sticking together bits which were previously
separated

topologically equivalent

© Weiskopf/Machiraju/Möller

Data Structures
• Structured and unstructured grids can be

distinguished by the way the elements or cells meet
• Structured grids

– Have a regular topology and regular / irregular geometry

• Unstructured grids
– Have irregular topology

and geometry

structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures
• An n-simplex

– The convex hull of n + 1 affinely independent points
– Lives in Rm , with n ≤ m
– 0: points, 1: lines, 2: triangles, 3: tetrahedra

• Partitions via simplices are called triangulations
• Simplical complex C is a collection of simplices with:

– Every face of an element of C is also in C
– The intersection of two elements of C is empty or it is a face

of both elements

• Simplical complex is a space with a triangulation

Simplical complexes Not a simplical complex

Data Structures
• Simplicial complexes can be of mixed dimensions

up to ≤ n
(except if “pure” complexes)

• Example:
Simplicial
3-complex

[Wikipedia.org]

Data Structures

• 2-manifold meshes: neighborhood is
2-dimensional topological disc (or half disc for
manifolds with boundary)

Data Structures

• Non-manifold meshes

12

Grid Types - Overview

unstructured grids hybrid grids

struc-
tured
grids

block-structured grids

ortho-
gonal
grids

curvi-linear grids

equi-
dist.
grids

rectilinear grids

Cartesian
grids (dx=dy)

uniform (regular)
grids (dxdy)

Interlude: Naming / Definition Caveats

Markus Hadwiger, KAUST 13

Beware of different naming conventions / different definitions

Example:
• On the previous slide, we used the term “orthogonal grid” in a simple, “global” way

for the entire grid, i.e., different types of rectilinear grids, …

• In differential geometry, an orthogonal coordinate system is defined pointwise, i.e.,
a curvilinear grid with orthogonal basis vectors at each point is orthogonal

In differential geometry, both of these are orthogonal (in our context, the right one is not):

Structured GridsStructured Grids

© Weiskopf/Machiraju/Möller

Data Structures
• Characteristics of structured grids

– Easier to compute with
– Often composed of sets of connected parallelograms

(hexahedra), with cells being equal or distorted with respect
to (non-linear) transformations

– May require more elements or badly shaped elements in
order to precisely cover the underlying domain

– Topology is represented implicitly by an n-vector of
dimensions

– Geometry is represented
explicitly by an array of points

– Every interior point has the
same number of neighbors

structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures
• Characteristics of structured grids

– Structured grids can be stored in a 2D / 3D array
– Arbitrary samples can be directly accessed by indexing a

particular entry in the array
– Topological information is implicitly coded

• Direct access to adjacent elements
– Cartesian, uniform, and rectilinear grids are necessarily

convex
– Their visibility ordering of elements with respect to any

viewing direction is given implicitly
– Their rigid layout prohibits the geometric structure to adapt

to local features
– Curvilinear grids reveal a much more flexible alternative to

model arbitrarily shaped objects
– However, this flexibility in the design of the geometric shape

makes the sorting of grid elements a more complex
procedure

© Weiskopf/Machiraju/Möller

Data Structures

• Typical implementation of structured grids

DataType *data = new DataType [Nx * Ny * Nz];
val = data[i + j * Nx + k * (Nx * Ny)];

… code for geometry …

Data Structures
• Cartesian or equidistant grids

– Structured grid
– Cells and points are numbered sequentially with respect to

increasing X, then Y, then Z, or vice versa
– Number of points = Nx•Ny•Nz
– Number of cells = (Nx-1)•(Ny-1)•(Nz-1)

dx = dy = dz

2D 3D
Ny

i
Nx

j dx

dy

© Weiskopf/Machiraju/Möller

Data Structures

• Cartesian grids
– Vertex positions are given implicitly from [i,j,k]:

• P[i,j,k].x = origin_x + i • dx
• P[i,j,k].y = origin_y + j • dy
• P[i,j,k].z = origin_z + k • dz

– Global vertex index I[i,j,k] = k•Ny•Nx + j•Nx + i
• k = I / (Ny•Nx)
• j = (I % (Ny•Nx)) / Nx
• i = (I % (Ny•Nx)) % Nx

– Global index allows for linear storage scheme
• Wrong access pattern might destroy cache coherence

© Weiskopf/Machiraju/Möller

Data Structures

• Uniform grids
– Similar to Cartesian grids
– Consist of equal cells but with different resolution in at least

one dimension (dx ≠ dy (≠ dz))
– Spacing between grid points is constant in each dimension
→ same indexing scheme as for Cartesian grids

– Most likely to occur in applications where the data is
generated by a 3D imaging device providing different
sampling rates in each dimension

– Typical example: medical volume data
consisting of slice images

• Slice images with square pixels (dx = dy)
• Larger slice distance (dz > dx = dy)

Nx

Ny

i

j
dx

dy

Data Structures
• Rectilinear grids

– Topology is still regular but irregular spacing
between grid points

• Non-linear scaling of positions along either axis
• Spacing, x_coord[L], y_coord[M], z_coord[N], must be

stored explicitly

– Topology is still implicit

(2D perimeter lattice:
rectilinear grid in IRIS Explorer)

© Weiskopf/Machiraju/Möller

Data Structures

• Curvilinear grids
– Topology is still regular but irregular spacing

between grid points
• Positions are non-linearly transformed

– Topology is still implicit, but vertex positions are
explicitly stored

• x_coord[L,M,N]
• y_coord[L,M,N]
• z_coord[L,M,N]

– Geometric structure
might result in
concave grids

© Weiskopf/Machiraju/Möller

Data Structures

• Curvilinear grids

Unstructured GridsUnstructured Grids

© Weiskopf/Machiraju/Möller

Data Structures

• Unstructured grids
– Can be adapted to local features

© Weiskopf/Machiraju/Möller

Data Structures

• Unstructured grids
– Can be adapted to local features

© Weiskopf/Machiraju/Möller

Data Structures
• If no implicit topological (connectivity) information is

given, the grids are called unstructured grids
– Unstructured grids are often computed using quadtrees

(recursive domain partitioning for data clustering), or by
triangulation of point sets

– The task is often to create a grid from scattered points

• Characteristics of unstructured grids
– Grid point geometry and connectivity must be stored
– Dedicated data structures needed to allow for efficient

traversal and thus data retrieval
– Often composed of triangles or

tetrahedra
– Typically, fewer elements are needed

to cover the domain

structured unstructured

© Weiskopf/Machiraju/Möller

Data Structures
• Unstructured grids

– Composed of arbitrarily positioned and connected
elements

– Can be composed of one unique element type
or they can be hybrid (tetrahedra, hexas, prisms)

– Triangle meshes in 2D and tetrahedral grids in 3D
are most common

– Can adapt to local features
(small vs. large cells)

– Can be refined adaptively
– Simple linear interpolation

in simplices

Common Unstructured Grid Types (1)

• Simplest: purely tetrahedral

32Markus Hadwiger

© Weiskopf/Machiraju/Möller

Grid Structures

Tet grid example

Common Unstructured Grid Types (2)

Pre-defined cell types
(tetrahedron, triangular prism, quad pyramid,
hexahedron, octahedron)

• Only triangle / quad faces

• Planar / non-planar faces

34Markus Hadwiger

Markus Hadwiger

Common Unstructured Grid Types (3)

(Nearly) arbitrary polyhedra

• Possibly non-planar faces

35

35

Example: General Polyhedral Cells

36Markus Hadwiger

Exhaust manifold

• 81,949 general, non-convex cells
(equivalent to 4,094,724 tetrahedral cells!)

• 324,013 vertices

• Color coding: temperature distribution

Hybrid GridsHybrid Grids

© Weiskopf/Machiraju/Möller

Data Structures

• Hybrid grids
– Combination of different grid types

© Weiskopf/Machiraju/Möller

Data Structures

Hybrid grid example

40

Grid Types - Overview

unstructured grids hybrid grids

struc-
tured
grids

block-structured grids

ortho-
gonal
grids

curvi-linear grids

equi-
dist.
grids

rectilinear grids

Cartesian
grids (dx=dy)

uniform (regular)
grids (dxdy)

Grids vs. Data on Grids

Markus Hadwiger, KAUST 41

grid

wikipedia

scalar field on grid

Unstructured Grid (Mesh)
Data Structures

Unstructured Grid (Mesh)
Data Structures

Unstructured 2D Grid: Direct Storage

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, …

Redundant, large storage size, cannot modify shared vertices easily

Store data values per face, or separately

Markus Hadwiger, KAUST 43

struct face
float verts[3][3]
DataType val;

x1,y1,z1
x2,y2,z2
x3,y3,z3
x1,y1,z1
x3,y3,z3
x4,y4,z4

...

face 1

face 2

coords for
vertex 1

1

2

3

4
GL_CCW
(if orientable

manifold)

Unstructured 2D Grid: Indirect Storage

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search
for shared edges (local information)

Markus Hadwiger, KAUST 44

x1,y1,(z1)
x2,y2,(z2)
x3,y3,(z3)
x4,y4,(z4)

...

vertex list face list
1,2,3
1,3,4
2,1,5

...

coords for
vertex 1

1

2

3

4

5

GL_CCW
(if orientable

manifold)

Unstructured 2D Grids: Connectivity/Incidence

Half-edge (doubly-connected edge list) data structure
• Pointer to half-edge (twin) in neighboring face

(mesh needs to be orientable 2-manifold)

• Pointer to next half-edge in same face

• Half-edge associated with one vertex, edge, face

Modifications: attributes, mesh simplification, …
• Vertices, corners, wedges, faces

• Express attribute continuity vs. discontinuity

Visualization often needs volumetric version of these ideas
(tet meshes, polyhedral meshes, …)

Markus Hadwiger, KAUST 45

Hugues Hoppe

3D Grids: Two-Sided Face Sequence Lists

General polyhedral grids (arbitrary polyhedral cells); example: TSFSL (Muigg et al., 2011)

Markus Hadwiger, KAUST 46

standard face/cell incidence two-sided face (sequence) lists

Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama

