

KAUST

CS 247 – Scientific Visualization Lecture 5: Data Representation, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #3 (until Feb 12)

Read (required):

- Data Visualization book, finish Chapter 3 (read starting with 3.6)
- Data Visualization book, Chapter 5 until 5.3 (inclusive)

Data Representation

Data == Functions

Mathematical Functions

Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from *domain* (X) to *codomain* (Y)

$$f \colon X \to Y$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{(x, f(x)) | x \in X\} \subset X \times Y$$

Mathematical Functions

Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from *domain* (X) to *codomain* (Y)

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{ (x, f(x)) | x \in \mathbb{R}^n \} \subset \mathbb{R}^n \times \mathbb{R}^m \simeq \mathbb{R}^{n+m}$$

datadescriptionvisualization example $R^2 \rightarrow R^2$ 2D-vector fieldhedgehog plot, LIC,
streamlets, etc

data	description	visualization example
R ³ →R ³	3D-flow	streamlines, streamsurfaces

Domain is Not Always Euclidean

Manifolds

• Scalar, vector, tensor fields on manifolds

Topological Manifolds

Every point of an *n*-manifold is homeomorphic (topologically equivalent) to a region of \mathbb{R}^n

Think about being able to assign coordinates to a region: coordinate chart; (collection of charts: atlas)

Smooth Manifolds

Well-defined tangent space at every point

• Dimensionality of each tangent space is the same as that of manifold

Enables calculus on manifolds (and vector fields, tensor fields, ...)

Sampled Functions and Data Structures

Data Representation

- Discrete (sampled) representations
 - The objects we want to visualize are often 'continuous'
 - But in most cases, the visualization data is given only at discrete locations in space and/or time
 - Discrete structures consist of samples, from which grids/meshes consisting of cells are generated
- Primitives in different dimensions

dimension	cell	mesh
0D 1D 2D 3D	points lines (edges) triangles, quadrilaterals (rectangles) tetrahedra, prisms, hexahedra	polyline(–gon) 2D mesh 3D mesh

- The (geometric) shape of the domain is determined by the positions of sample points
- Domain is characterized by
 - Dimensionality: 0D, 1D, 2D, 3D, 4D, ...
 - Influence: How does a data point influence its neighborhood?
 - Structure: Are data points connected? How? (Topology)

- Influence of data points
 - Values at sample points influence the data distribution in a certain region around these samples
 - To reconstruct the data at arbitrary points within the domain, the distribution of all samples has to be calculated
- Point influence
 - Only influence on point itself
- Local influence
 - Only within a certain region
 - Voronoi diagram
 - Cell-wise interpolation (see later in course)
- Global influence
 - Each sample might influence any other point within the domain
 - Material properties for whole object
 - Scattered data interpolation

- Voronoi diagram
 - Construct a region around each sample point that covers all points that are closer to that sample than to every other sample
 - Each point within a certain region gets assigned the value of the sample point

- Scattered data interpolation
 - At each point the weighted average of all sample points in the domain is computed
 - Weighting functions determine the support of each sample point
 - Radial basis functions simulate decreasing influence
 with increasing distance from samples
 - Schemes might be non-interpolating and expensive in terms of numerical operations

- Requirements:
 - Efficiency of accessing data
 - Space efficiency
 - Lossless vs. lossy
 - Portability
 - Binary less portable, more space/time efficient
 - Text human readable, portable, less space/time efficient
- Definition
 - If points are arbitrarily distributed and no connectivity exists between them, the data is called scattered
 - Otherwise, the data is composed of cells bounded by grid lines
 - **Topology** specifies the structure (**connectivity**) of the data
 - Geometry specifies the position of the data

- Some definitions concerning topology and geometry
 - In topology, qualitative questions about geometrical structures are the main concern
 - Does it have any holes in it?
 - Is it all connected together?
 - Can it be separated into parts?
- Underground map does not tell you how far one station is from the other, but rather how the lines are connected (topological map)

Grids – General Questions

Important questions:

- Which data organization is optimal?
- Where do the data come from?
- Is there a neighborhood relationship?
- How is the neighborhood info stored?
- How is navigation within the data possible?
- What calculations with the data are possible ?
- Are the data structured (regular/irregular topology)?

- Grid types
 - Grids differ substantially in the cells (basic building blocks) they are constructed from and in the way the topological information is given

- Topology
 - Properties of geometric shapes that remain unchanged even when under distortion

Same geometry (vertex positions), different topology (connectivity)

- Topologically equivalent
 - Things that can be transformed into each other by stretching and squeezing, without tearing or sticking together bits which were previously separated

topologically equivalent

- Structured and unstructured grids can be distinguished by the way the elements or cells meet
- Structured grids
 - Have a regular topology and regular / irregular geometry
- Unstructured grids
 - Have irregular topology and geometry

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama