

KAUST

CS 247 – Scientific Visualization Lecture 4: Data Representation, Pt. 1

Markus Hadwiger, KAUST

Reading Assignment #2 (until Feb 5)

Read (required):

- Data Visualization book, finish Chapter 2
- Data Visualization book, Chapter 3 until 3.5 (inclusive)
- Data Visualization book, Chapter 4 until 4.1 (inclusive)
- Continue familiarizing yourself with OpenGL if you do not know it !

The Visualization Pipeline

The Visualization Pipeline – Overview

The Visualization Pipeline – Stage 1

- Measurements, e.g., CT/MRI
- Simulation, e.g., flow simulation
- Modeling, e.g., game theory

- Filtering, e.g, smoothing (de-noising, ...)
- Resampling, e.g., on a different-resolution grid
- Data derivation, e.g., gradients, curvature
- Data interpolation, e.g., linear, cubic, ...

The Visualization Pipeline – Stage 3

Make data "renderable"

- Iso-surface calculation
- Glyphs, icons determination
- Graph-layout calculation
- Voxel attributes: color, transparency, ...

The Visualization Pipeline – Stage 4

Rendering = image generation with computer graphics

- Visibility calculation
- Illumination
- Compositing (combine transparent objects, ...)
- Animation

Programming Assignments Schedule (tentative)

Assignment 0:

Assignment 1:

Assignment 2:

Assignment 3:

Assignment 4:

	volume ray-casting, part z	unui	Apr 9
Assignment 5:	Flow vis, part 1 (hedgehog plots, streamlines, pathlines)	until	Apr 30
Assignment 6:	Flow vis, part 2 (LIC with color coding)	until	May 10

Programming Assignment #1: Slice Viewer

Basic tasks

- Download data into 3D volume texture
- Display three different axis-aligned slices using OpenGL texture mapping using the 3D volume texture

Minimum

- The slice position should be adjustable for each slice view.
- Make sure the aspect ratio of the shown slices is correct.
- If the window is resized, the slice is resized with the correct aspect ratio (no distortions)

Bonus

- Show all three axis aligned slices at once
- Show arbitrarily aligned slices with an interface to change the arbitrary slice

#include <iostream>

=#define print0pen6(Error() print0g]Error((char *) FTLE | ITNE)

Texture Mapping

2D Texture Mapping

RGBA

:

ト

O

3D Texture Mapping

Data Representation

Our Input: Data

Focus of visualization, everything is centered around data

- Driving factor (besides user) in choice and attribution of the visualization technique
- Important questions
 - **Data space**: where do the data "live"? (domain)
 - Type of the data
 - Which representation makes sense (secondary aspect)

Data Space: Domain

Where do the data "live"? (domain)

- Inherent spatial domain (SciVis):
 - 2D/3D data space given
 - examples: medical data, flow simulation data, GIS data, etc.
- No inherent spatial reference (InfoVis):
 - abstract data, spatial embedding through visualization
 - example: data bases, deep neural nets
- Aspects: dimensionality, domain, coordinates, region of influence of samples (local, global)

Data Type: Codomain

What type of data?

Data types:

- Scalar = numerical value (natural, integer, rational, real, complex numbers)
- Non-numerical (categorical) values (e.g., blood type)
- Multi-dimensional values, i.e., codomain (n-dim. vectors, second-order (n × n) tensors, higher-order tensors, ...)
- Multi-modal values (vectors of data with varying type [e.g., row in a table])
- Aspects: dimensionality, codomain (superset of range/image)

Data == Functions

Mathematical Functions

Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from *domain* (X) to *codomain* (Y)

$$f: X \to Y$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

 $G(f) := \{(x, f(x)) | x \in X\} \subset X \times Y$

Mathematical Functions

Associates every element of a set (e.g., X) with *exactly one* element of another set (e.g., Y)

Maps from *domain* (X) to *codomain* (Y)

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto f(x)$$

Also important: *range/image*; *preimage*; continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

$$G(f) := \{ (x, f(x)) | x \in \mathbb{R}^n \} \subset \mathbb{R}^n \times \mathbb{R}^m \simeq \mathbb{R}^{n+m}$$

© Weiskopf/Machiraju/Möller

Example: Scalar Fields

2D scalar field

$$f \colon \mathbb{R}^2 \to \mathbb{R}$$
$$x \mapsto f(x)$$

Graph: $G(f) := \{(x, f(x)) | x \in \mathbb{R}^2\} \subset \mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3$

pre-image

$$S(c) := f^{-1}(c)$$

iso-contour

 $(\nabla f \neq 0)$

Example: Scalar Fields

3D scalar field

$$f: \mathbb{R}^3 \to \mathbb{R}$$
$$x \mapsto f(x)$$

Graph:
$$G(f) := \{(x, f(x)) | x \in \mathbb{R}^3\} \subset \mathbb{R}^3 \times \mathbb{R} \simeq \mathbb{R}^4$$

pre-image $S(c) := f^{-1}(c)$ iso-surface $(\nabla f \neq 0)$

data	description	visualization example
$N^1 \rightarrow R^1$	value series	bar chart, pie chart, etc.
$R^1 \rightarrow R^1$	scalar function over R	(line) graph
R²→R¹	scalar function over R ²	2D-height map in 3D, contour lines in 2D, false color map
$R^2 \rightarrow R^2$	2D vector field	hedgehog plot, LIC, streamlets, etc.
$R^3 \rightarrow R^1$	scalar function over R ³ (3D densities)	iso-surfaces in 3D, volume rendering
$R^3 \rightarrow R^3$	3D vector field	streamlines/pathlines in 3D

data	description	visualization example	
N¹→F	R ¹ value series	bar chart, pie chart, etc.	
Midget Sales (millions)	PLplot Example 12		

data	description	visualization example
$R^1 \rightarrow R^1$	function over R	(line) graph
PLplot Examp 1.0 ()) $())$ $())$ $())$ $()$ $()$ $()$	ble 1 – Sinc Function ++++++++++++++++++++++++++++++++++++	PLplot Example 1 – Sine function

data	description	visualization example
R ² →R ¹	function over R ²	2D-height map in 3D, contour lines in 2D, false colors (heat map)

datadescriptionvisualization example $R^2 \rightarrow R^2$ 2D-vector fieldhedgehog plot, LIC,
streamlets, etc

data	description	visualization example
R ³ →R ³	3D-flow	streamlines, streamsurfaces

Domain is Not Always Euclidean

Manifolds

• Scalar, vector, tensor fields on manifolds

Topological Manifolds

Every point of an *n*-manifold is homeomorphic (topologically equivalent) to a region of \mathbb{R}^n

Think about being able to assign coordinates to a region: coordinate chart; (collection of charts: atlas)

Smooth Manifolds

Well-defined tangent space at every point

• Dimensionality of each tangent space is the same as that of manifold

Enables calculus on manifolds (and vector fields, tensor fields, ...)

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama