
CS 247 – Scientific Visualization
Lecture 29: Vector / Flow Visualization, Pt. 8
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Reading Assignment #15++ (1)

Reading suggestions:
• Data Visualization book, Chapter 6.7

• J. van Wijk: Image-Based Flow Visualization,
ACM SIGGRAPH 2002
http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

• T. Günther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:
Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite 
Winds of an Atmospheric Karman Vortex Street, 2021
https://www.essoar.org/doi/10.1002/essoar.10506682.2

• H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition – A Survey, TVCG 19(8), 2013
https://doi.org/10.1109/TVCG.2012.316

• Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE (3Blue1Brown)

• Matrix exponentials:
https://www.youtube.com/watch?v=O85OWBJ2ayo (3Blue1Brown)
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Reading Assignment #15++ (2)

Reading suggestions:
• Tobias Günther, Irene Baeza Rojo:

Introduction to Vector Field Topology
https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

• Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:
State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties
https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.14037

• B. Jobard, G. Erlebacher, M. Y. Hussaini:
Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization
http://dx.doi.org/10.1109/TVCG.2002.1021575

• Anna Vilanova, S. Zhang, Gordon Kindlmann, David Laidlaw:
An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications
http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf



Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field → tensor field)
• Gradient of vector field: how does the vector field change?

• In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

v

• Can be decomposed into symmetric part + anti-symmetric part

v = D + S velocity gradient tensor

sym.: D = ½ ( v + (v)T ) deform.:    rate-of-strain tensor
skew-sym.: S = ½ ( v – (v)T ) rotation: vorticity/spin tensor

these are
partial derivatives!



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor
• Antisymmetric part of velocity gradient tensor

• Corresponds to vorticity/curl/angular velocity (beware of factor ½)

S = ½ ( v – (v)T )

S = ½

S acts on vector like cross product with     :   S    = ½

these are
partial
derivatives!



Angular Velocity of Rigid Body Rotation

Rate of rotation
• Scalar ω: angular displacement per unit time (rad s-1)

– Angle ϴ at time t is ϴ(t) = ωt; ω = 2πf where f is the frequency (f = 1/T; s-1)

• Vector ω: axis of rotation; magnitude is angular speed (if ω is curl: speed x2)
– Beware of different conventions that differ by a factor of ½ !

Cross product of ½ω with vector to center of
rotation (r) gives linear velocity vector v (tangent)



Velocity Gradient Tensor and Components (1)

Velocity gradient tensor
(here: in Cartesian coordinates)

these are the same
partial derivatives
as before!



Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor
(symmetric part; here: in Cartesian coordinates)



Velocity Gradient Tensor and Components (3)

Vorticity tensor (spin tensor)
(skew-symmetric part; here: in Cartesian coordinates)



Critical Point AnalysisCritical Point Analysis



Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



(Non-Linear) Dynamical Systems

Start with system of linear ODEs (with constant coefficients)
• Non-linear systems can be linearized around critical points

• Use linearization for characterization

solution:

characterize behavior
through eigenvalues of A



A Few Facts about Eigenvalues and –vectors

The matrix             has eigenvalues

with eigenvectors

If c = 0, this is a skew-symmetric matrix

Skew-symmetric matrices: “infinitesimal rotations” (infinitesimal generators of rot.)

For                and              : 2x2 rotation matrix with

Eigenvalues
• Symmetric matrix: all eigenvalues are real

• Skew-symmetric matrix: all eigenvalues are pure imaginary
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Euler’s Formula

Can be derived from the infinite power series for exp(), cos(), sin()
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Critical Points (Steady Flow!)
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Exponentials of anti-symmetric matrices are rotation matrices
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Complex eigenvalues lead to rotation
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Classification of Critical Points

(Isolated) critical point (equilibrium point)
• Velocity vanishes (all components zero)

Characterize using velocity gradient v at critical point
• Look at eigenvalues (and eigenvectors) of v  

det( v(x ) ) 0

the first three phase portraits are special cases, see later slides!

c c c

xc



A Few Details (1)

Repelling/attracting nodes
• Do not necessarily imply that streamlines are straight lines

(do not confuse with the linear system of ODEs!)

• They are only straight lines when both eigenvalues are real and have 
the same sign, and are also equal (as in the phase portraits before)

• If they are not equal:
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A Few Details (2)

What about skew axes?
• Both of the systems below have eigenvalues 3 and 6

• Jordan normal form (Jordan canonical form) gives details
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Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing
• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
21

(defective matrix)



Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing
• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
22

(defective matrix)

same eigenvalues, 
trace, determinant!



Another Example
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has form

Eigenvalues:

λ1 = -1

λ2 = 2



Jordan Form Characterization (1)

Phase portraits corresponding to Jordan matrix
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Jordan Form Characterization (2)

Phase portraits corresponding to Jordan matrix
(matrix is defective: eigenspaces collapse,
geometric multiplicity less than algebraic multiplicity)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (3)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (4)
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Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

Sources (red), sinks (blue), saddles (yellow)
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Vector Field Topology: Topological Skeleton

Connect critical points by separatrices
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Index of Critical Points / Vector Fields

Poincaré index (in scalar field topology we had the Morse index)
• Can compute index (winding number) for each critical point

• Index of a region is the sum of the critical point indexes inside

• Sum of all indexes over a manifold is its Euler characteristic

Do a loop (Jordan curve) around each critical point: the index is its
(Brouwer) degree: integer how often the vector field along the loop turns 
around (determined by angle 1-form integrated over oriented 1-manifold)



Higher-Order Critical Points

Higher than first-order

• Sectors can by elliptic, parabolic, hyperbolic

• For index sum over number of elliptic and hyperbolic sectors
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(see monkey saddle)(dipole)



Example: Differential Topology

Topological information from vector fields on manifold
• Independent of actual vector field! Poincaré-Hopf theorem (sum of indexes == Euler char.)

• Useful constraints: vector field editing, simplification, sphere always has critical point, …

Topological invariant: Euler characteristic          of manifold
(for 2-manifold mesh:                               )
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genus g=0
Euler characteristic 2

genus g=1
Euler characteristic 0

genus g=2
Euler characteristic -2

(orientable)



Example: Vector Field Editing

Guoning Chen et al., Vector Field Editing and Periodic Orbit 
Extraction Using Morse Decomposition, IEEE TVCG, 2007
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Recommended Books (1)



Recommended Books (2)



Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


