

KAUST

CS 247 – Scientific Visualization Lecture 29: Vector / Flow Visualization, Pt. 8

Markus Hadwiger, KAUST

Reading Assignment #15++ (1)

Reading suggestions:

- Data Visualization book, Chapter 6.7
- J. van Wijk: *Image-Based Flow Visualization*, ACM SIGGRAPH 2002

http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

• T. Günther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler: Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite Winds of an Atmospheric Karman Vortex Street, 2021

https://www.essoar.org/doi/10.1002/essoar.10506682.2

 H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer: *The Helmholtz-Hodge Decomposition – A Survey*, TVCG 19(8), 2013

```
https://doi.org/10.1109/TVCG.2012.316
```

• Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives https://www.youtube.com/watch?v=rB83DpBJQsE(3Blue1Brown)

• Matrix exponentials:

```
https://www.youtube.com/watch?v=0850WBJ2ayo (3Blue1Brown)
```

Reading Assignment #15++ (2)

Reading suggestions:

 Tobias Günther, Irene Baeza Rojo: *Introduction to Vector Field Topology* https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

 Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang: State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness Through Mathematical Properties https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.14037

- B. Jobard, G. Erlebacher, M. Y. Hussaini: Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization http://dx.doi.org/10.1109/TVCG.2002.1021575
- Anna Vilanova, S. Zhang, Gordon Kindlmann, David Laidlaw: An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf

Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field \rightarrow tensor field)

- Gradient of vector field: how does the vector field change?
- In Cartesian coordinates: *spatial partial derivatives (Jacobian matrix)*

$$\nabla \mathbf{v} (x, y, z) = \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{pmatrix}$$
these are partial derivatives!

• Can be decomposed into symmetric part + anti-symmetric part

 $\nabla \mathbf{v} = \mathbf{D} + \mathbf{S}$

velocity gradient tensor

sym.: $\mathbf{D} = \frac{1}{2} (\nabla \mathbf{v} + (\nabla \mathbf{v})^T)$ skew-sym.: $S = \frac{1}{2} (\nabla v - (\nabla v)^T)$ rotation: *vorticity/spin tensor*

deform : rate-of-strain tensor

Vector Fields and Dynamical Systems (2)

thoos or

Vorticity/spin/angular velocity tensor

- Antisymmetric part of velocity gradient tensor
- Corresponds to vorticity/curl/angular velocity (beware of factor 1/2)

$$\mathbf{S} = \frac{1}{2} \left(\nabla \mathbf{V} - (\nabla \mathbf{V})^{\mathrm{T}} \right)$$
partial
derivatives!

$$\mathbf{S} = \frac{1}{2} \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \quad \boldsymbol{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \nabla \times \mathbf{v} = \begin{pmatrix} w_y - v_z \\ u_z - w_x \\ v_x - u_y \end{pmatrix}$$

S acts on vector like cross product with ω : **S** • = $\frac{1}{2}\omega \times$

$$\mathbf{v}^{(r)} = \mathbf{S} \cdot d\mathbf{r} = \frac{1}{2} \left[\nabla \mathbf{v} - (\nabla \mathbf{v})^T \right] \cdot d\mathbf{r} = \frac{1}{2} \boldsymbol{\omega} \times d\mathbf{r}$$

Angular Velocity of Rigid Body Rotation

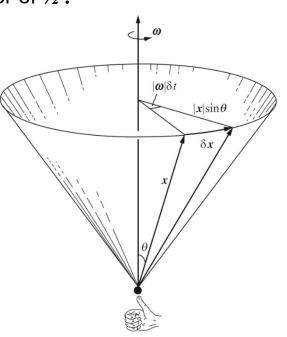
Rate of rotation

- Scalar ω: angular displacement per unit time (rad s⁻¹)
 - Angle Θ at time t is $\Theta(t) = \omega t$; $\omega = 2\pi f$ where f is the frequency (f = 1/T; s⁻¹)
- Vector $\boldsymbol{\omega}$: axis of rotation; magnitude is angular speed (if $\boldsymbol{\omega}$ is curl: speed x2)
 - Beware of different conventions that differ by a factor of $\frac{1}{2}$!

Cross product of $\frac{1}{2}\omega$ with vector to center of rotation (r) gives linear velocity vector v (tangent)

X X X X + + +

$$\mathbf{v}^{(r)} = rac{1}{2} \, oldsymbol{\omega} \, imes d\mathbf{r}$$



Velocity Gradient Tensor and Components (1)

Velocity gradient tensor

(here: in Cartesian coordinates)

$$\nabla \mathbf{v} = \begin{bmatrix} \frac{\partial}{\partial x} v^{x} & \frac{\partial}{\partial y} v^{x} & \frac{\partial}{\partial z} v^{x} \\ \frac{\partial}{\partial x} v^{y} & \frac{\partial}{\partial y} v^{y} & \frac{\partial}{\partial z} v^{y} \\ \frac{\partial}{\partial x} v^{z} & \frac{\partial}{\partial y} v^{z} & \frac{\partial}{\partial z} v^{z} \end{bmatrix}$$

these are the same partial derivatives as before!

$$\nabla \mathbf{v} = \frac{1}{2} \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) + \frac{1}{2} \left(\nabla \mathbf{v} - (\nabla \mathbf{v})^T \right)$$

Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)

$$\mathbf{D} = \frac{1}{2} \begin{bmatrix} 2\frac{\partial}{\partial x}v^{x} & \frac{\partial}{\partial y}v^{x} + \frac{\partial}{\partial x}v^{y} & \frac{\partial}{\partial z}v^{x} + \frac{\partial}{\partial x}v^{z} \\ \frac{\partial}{\partial x}v^{y} + \frac{\partial}{\partial y}v^{x} & 2\frac{\partial}{\partial y}v^{y} & \frac{\partial}{\partial z}v^{y} + \frac{\partial}{\partial y}v^{z} \\ \frac{\partial}{\partial x}v^{z} + \frac{\partial}{\partial z}v^{x} & \frac{\partial}{\partial y}v^{z} + \frac{\partial}{\partial z}v^{y} & 2\frac{\partial}{\partial z}v^{z} \end{bmatrix}$$

$$tr(\mathbf{D}) = \nabla \cdot \mathbf{v}$$

Velocity Gradient Tensor and Components (3)

Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)

$$\mathbf{S} = \frac{1}{2} \begin{bmatrix} 0 & \frac{\partial}{\partial y} v^{x} - \frac{\partial}{\partial x} v^{y} & \frac{\partial}{\partial z} v^{x} - \frac{\partial}{\partial x} v^{z} \\ \frac{\partial}{\partial x} v^{y} - \frac{\partial}{\partial y} v^{x} & 0 & \frac{\partial}{\partial z} v^{y} - \frac{\partial}{\partial y} v^{z} \\ \frac{\partial}{\partial x} v^{z} - \frac{\partial}{\partial z} v^{x} & \frac{\partial}{\partial y} v^{z} - \frac{\partial}{\partial z} v^{y} & 0 \end{bmatrix}$$

$$\mathbf{S} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \qquad \boldsymbol{\omega} \equiv \nabla \times \mathbf{v}$$

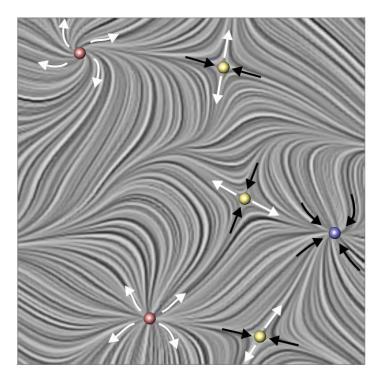
Critical Point Analysis

Critical Points (Steady Flow!)

Classify critical points according to the *eigenvalues* of the velocity gradient tensor at the critical point



stream lines (LIC)



critical points (v = 0)

(Non-Linear) Dynamical Systems

Start with system of linear ODEs (with constant coefficients)

- Non-linear systems can be linearized around critical points
- Use linearization for characterization
- $\dot{\mathbf{x}} = A\mathbf{x}$ A is an $n \times n$ matrix

$$\bullet \quad \mathbf{v} = A \mathbf{x}, \\ \nabla \mathbf{v} = A.$$

$$\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt} = \begin{bmatrix} \frac{dx_1}{dt} \\ \vdots \\ \frac{dx_n}{dt} \end{bmatrix}$$

$$\mathbf{x}(0) = \mathbf{x}_0$$

solution:
$$\mathbf{x}(t) = e^{At}\mathbf{x}_0$$

characterize behavior through eigenvalues of A

A Few Facts about Eigenvalues and –vectors

The matrix
$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$
 has eigenvalues $\lambda_1 = c + s\mathbf{i}$ $\lambda_2 = c - s\mathbf{i}$
with eigenvectors $u_1 = \begin{bmatrix} 1 \\ -\mathbf{i} \end{bmatrix}$ $u_2 = \begin{bmatrix} 1 \\ +\mathbf{i} \end{bmatrix}$

If c = 0, this is a skew-symmetric matrix

Skew-symmetric matrices: "infinitesimal rotations" (infinitesimal generators of rot.)

For
$$c = \cos \theta$$
 and $s = \sin \theta$: 2x2 rotation matrix with $\lambda_1 = e^{i\theta} = \cos \theta + i \sin \theta$

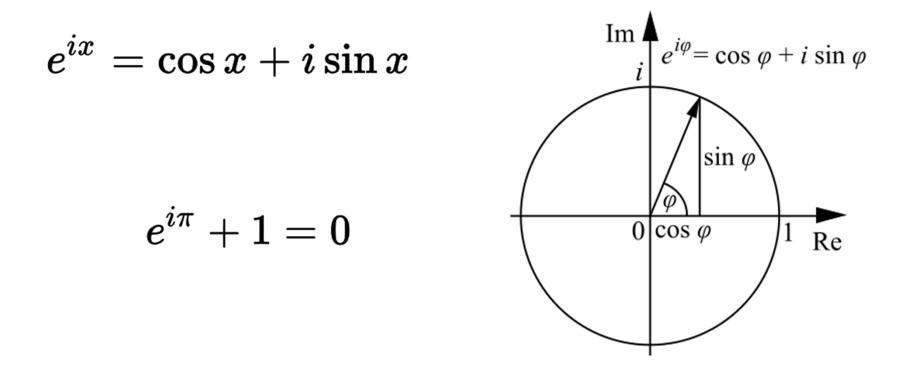
$$\lambda_2 = e^{-\mathbf{i}\theta} = \cos\theta - \mathbf{i}\sin\theta$$

Eigenvalues

- Symmetric matrix: all eigenvalues are *real*
- Skew-symmetric matrix: all eigenvalues are *pure imaginary*

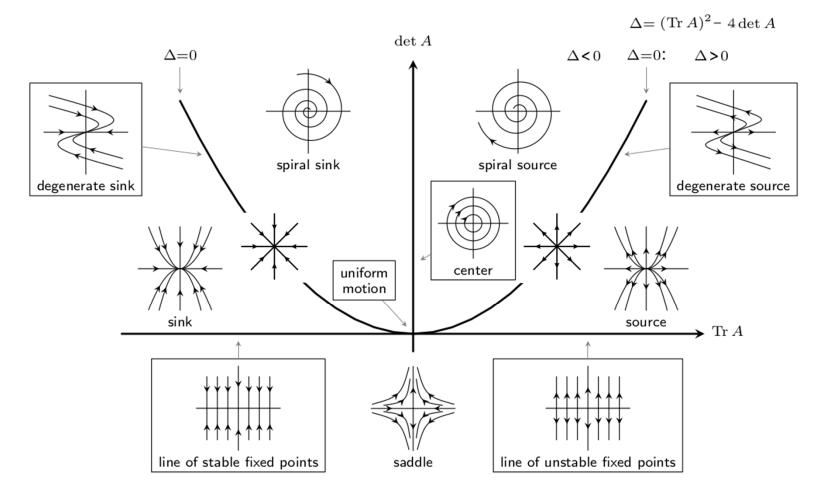
Euler's Formula

Can be derived from the infinite power series for exp(), cos(), sin()



Critical Points (Steady Flow!)

Poincaré Diagram: Classification of Phase Portaits in the $(\det A, \operatorname{Tr} A)$ -plane



Matrix Exponentials

Defined via same power series as usual exponential

$$\exp(X) = e^X := \sum_{k=0}^{\infty} \frac{X^k}{k!} = I + X + \frac{X^2}{2!} + \frac{X^3}{3!} + \dots$$

Easy if *X* is diagonalizable

$$X = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad \exp(tX) = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix}$$

Exponentials of anti-symmetric matrices are rotation matrices

$$X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \exp(tX) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

Matrix Exponentials

Defined via same power series as usual exponential

 $\lambda_{1,2} = a \pm \mathbf{i}\boldsymbol{\omega}$

$$\exp(X) = e^X := \sum_{k=0}^{\infty} \frac{X^k}{k!} = I + X + \frac{X^2}{2!} + \frac{X^3}{3!} + \dots$$

Easy if *X* is diagonalizable

$$X = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad \exp(tX) = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix}$$

Complex eigenvalues lead to rotation

$$X = \begin{pmatrix} a & -\omega \\ \omega & a \end{pmatrix} \qquad \exp(tX) = e^{at} \begin{pmatrix} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{pmatrix}$$

Markus Hadwiger, KAUST

Classification of Critical Points

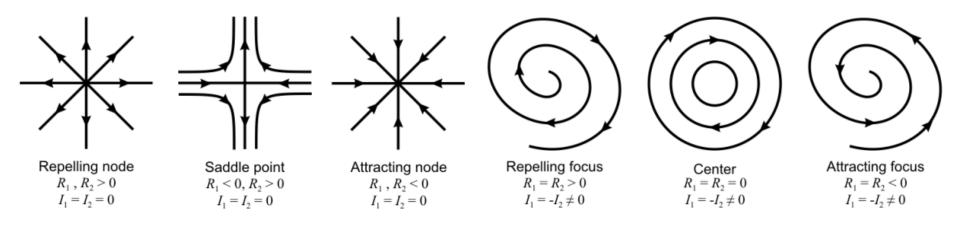
(Isolated) critical point (equilibrium point)

• Velocity vanishes (all components zero)

 $\mathbf{v}(\mathbf{x}_c) = \mathbf{0}$ with $\mathbf{v}(\mathbf{x}_c \pm \epsilon) \neq \mathbf{0}$ det($\nabla \mathbf{v}(\mathbf{x}_c) \neq \mathbf{0}$

Characterize using velocity gradient ∇v at critical point x_c

- Look at eigenvalues (and eigenvectors) of $\nabla \mathbf{v}$

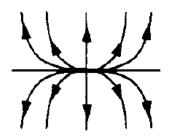


the first three phase portraits are special cases, see later slides!

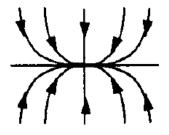
A Few Details (1)

Repelling/attracting nodes

- Do not necessarily imply that streamlines are straight lines (do not confuse with the linear system of ODEs!)
- They are only straight lines when both eigenvalues are real and have the same sign, *and are also equal* (as in the phase portraits before)
- If they are not equal:



Repelling Node R1, R2 > 0 I1, I2 = 0

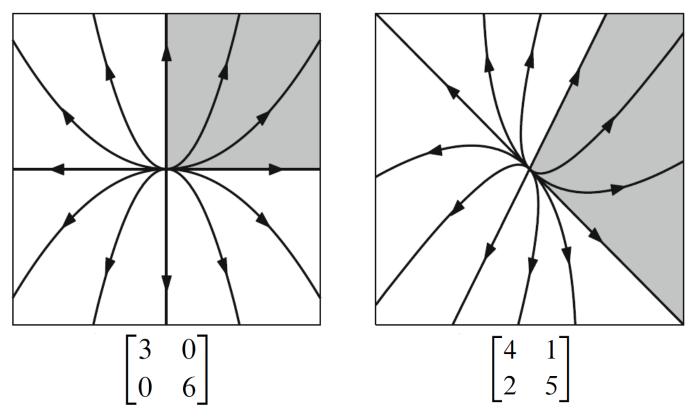


Attracting Node R1, R2 < 0 I1, I2 = 0

A Few Details (2)

What about skew axes?

- Both of the systems below have eigenvalues 3 and 6
- Jordan normal form (Jordan canonical form) gives details



Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix A there is an invertible P such that

 $P^{-1}AP$ is one of the following Jordan matrices (all entries are real):

 $J_{1} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \qquad J_{2} = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix} \quad \text{(defective matrix)}$ $J_{3} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \qquad J_{4} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

Each of these has its corresponding rule for constructing P

• Example on prev. slide (the two eigenvectors are not orthogonal):

$$P = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \qquad \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$$

See also algebraic and geometric multiplicity of eigenvalues

Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix A there is an invertible P such that

 $P^{-1}AP$ is one of the following Jordan matrices (all entries are real):

 $J_{1} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \qquad \qquad J_{2} = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix}$ (defective matrix) same eigenvalues, trace, determinant! $J_{3} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \qquad \qquad J_{4} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

Each of these has its corresponding rule for constructing P

• Example on prev. slide (the two eigenvectors are not orthogonal):

$$P = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \qquad \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$$

See also algebraic and geometric multiplicity of eigenvalues

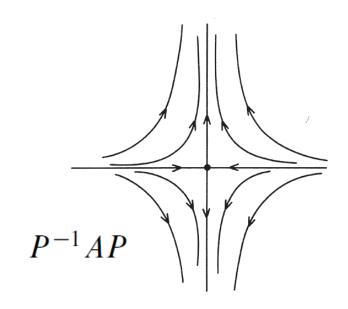
Another Example

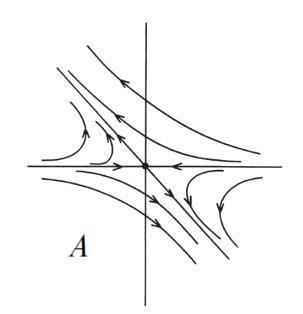
 $P^{-1}AP$ has form J_1 Eigenvalues:

 $\lambda_1 = -1$

 $\lambda_2 = 2$

$$A = \begin{bmatrix} -1 & -3 \\ 0 & 2 \end{bmatrix}$$
$$P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \qquad P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

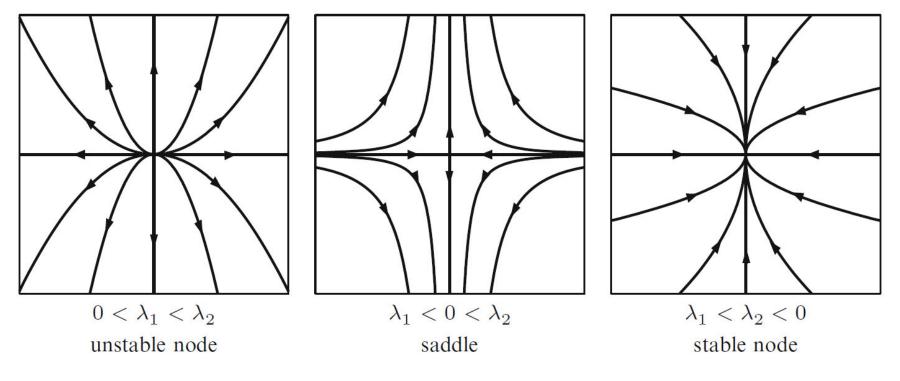




Jordan Form Characterization (1)

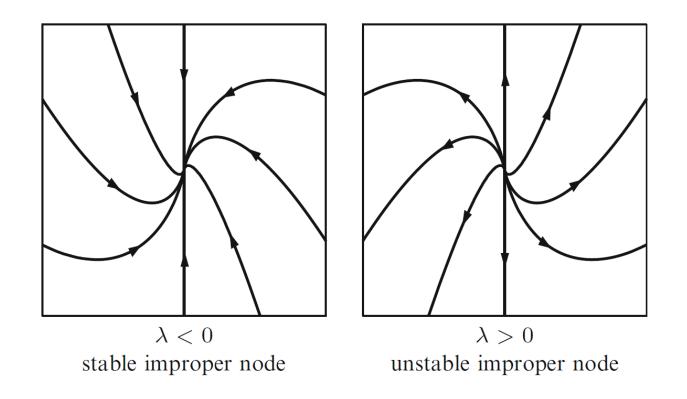
Phase portraits corresponding to Jordan matrix

$$J_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$



Jordan Form Characterization (2)

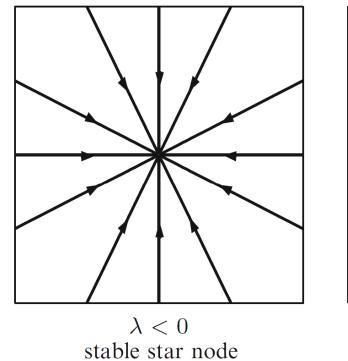
Phase portraits corresponding to Jordan matrix (matrix is defective: eigenspaces collapse, $J_2 = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix}$ geometric multiplicity less than algebraic multiplicity)

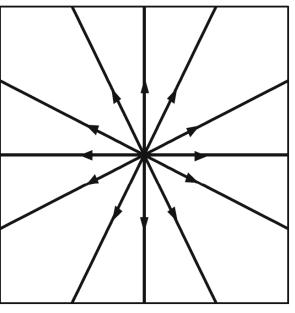


Jordan Form Characterization (3)

Phase portraits corresponding to Jordan matrix

$$J_3 = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$





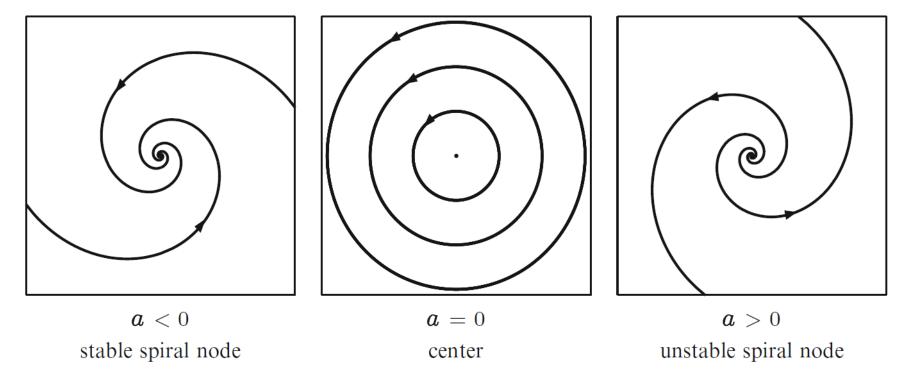
 $\lambda > 0$ unstable star node

Jordan Form Characterization (4)

Phase portraits corresponding to Jordan matrix

$$J_4 = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

.

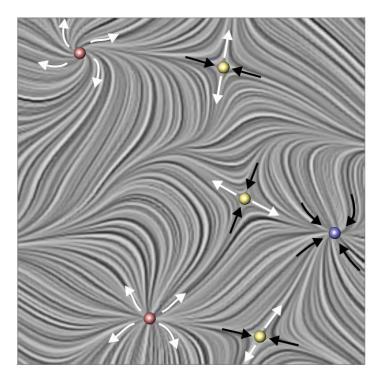


Critical Points (Steady Flow!)

Classify critical points according to the *eigenvalues* of the velocity gradient tensor at the critical point



stream lines (LIC)

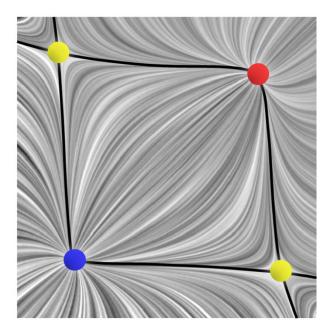


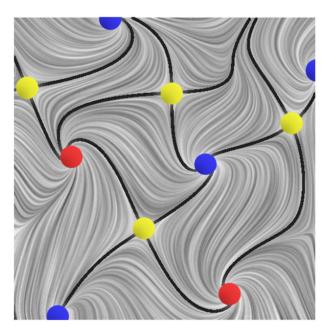
critical points (v = 0)

Markus Hadwiger, KAUST

Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

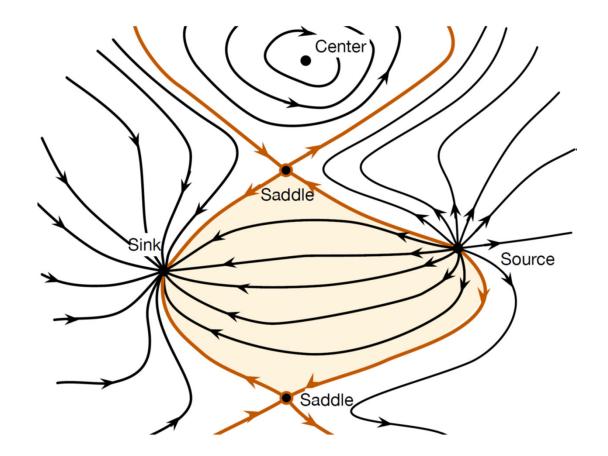




Sources (red), sinks (blue), saddles (yellow)

Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

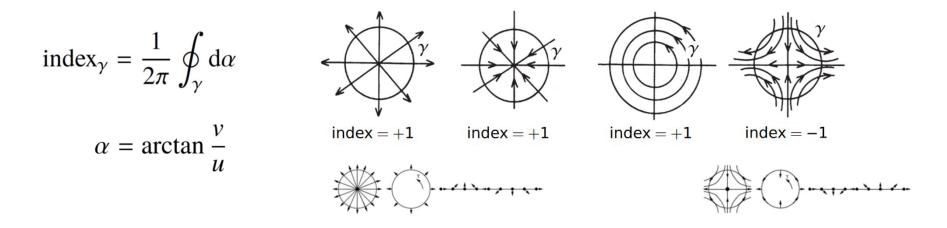


Index of Critical Points / Vector Fields

Poincaré index (in scalar field topology we had the Morse index)

- Can compute index (winding number) for each critical point
- Index of a region is the sum of the critical point indexes inside
- Sum of all indexes over a manifold is its Euler characteristic

Do a loop (Jordan curve) around each critical point: the index is its (Brouwer) degree: integer how often the vector field along the loop turns around (determined by angle 1-form integrated over oriented 1-manifold)



Higher-Order Critical Points

Higher than first-order

- Sectors can by elliptic, parabolic, hyperbolic
- For index sum over number of elliptic and hyperbolic sectors

$$index_{cp} = 1 + \frac{n_e - n_h}{2}$$

$$index_{rp} = 1 + \frac{n_e - n_h}{2}$$

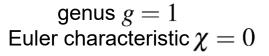
Example: Differential Topology

Topological information from vector fields on manifold

- Independent of actual vector field! Poincaré-Hopf theorem (sum of indexes == Euler char.)
- Useful constraints: vector field editing, simplification, sphere always has critical point, ...
- Topological invariant: Euler characteristic $\chi(M)$ of manifold *M* (for 2-manifold mesh: $\chi(M) = V - E + F$)

 $\chi=2-2g$ (orientable)

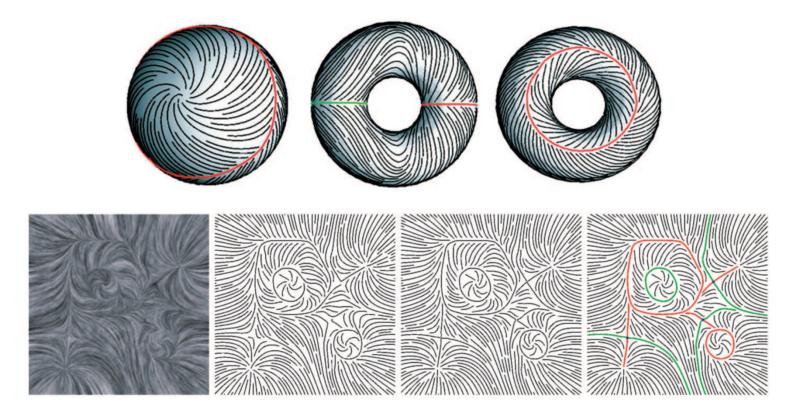
genus g = 0Euler characteristic $\chi = 2$



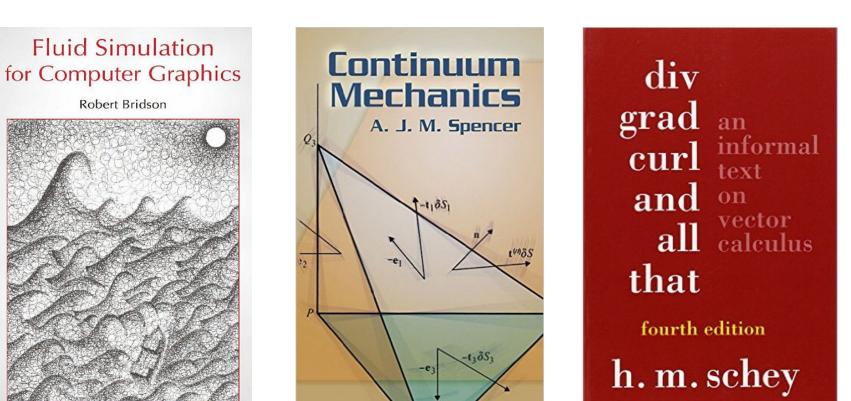
genus g = 2Euler characteristic $\chi = -2$

Example: Vector Field Editing

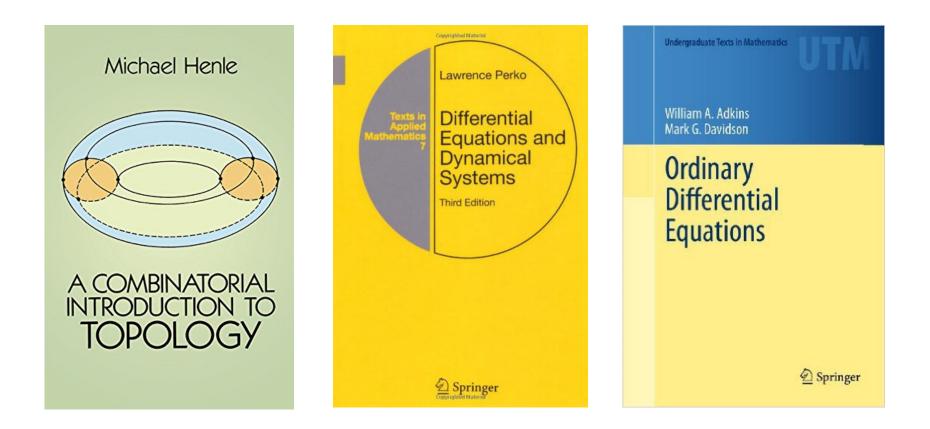
Guoning Chen et al., Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition, IEEE TVCG, 2007



Recommended Books (1)



Recommended Books (2)



Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama