A,

=
King Abdullah University of "-\"

Science and Technology KAU ST

CS 247 — Scientific Visualization
Lecture 29: Vector / Flow Visualization, Pt. 8

adwiger, KAUST




Reading Assignment #15++ (1)

Reading suggestions:

Data Visualization book, Chapter 6.7
J. van Wijk: Image-Based Flow Visualization,

ACM SIGGRAPH 2002
http://www.win. tue.nl/~vanwijk/ibfv/ibfv.pdf

T. Gunther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:
Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite
Winds of an Atmospheric Karman Vortex Street, 2021

https://www.essoar.org/doi/10.1002/essoar.10506682.2

H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition — A Survey, TVCG 19(8), 2013

https://doi.org/10.1109/TVCG.2012.316

Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE (3Blue1Brown)

Matrix exponentials:
https://www.youtube.com/watch?v=0850WBJ2ayo (3Blue1Brown)



Reading Assignment #15++ (2)

Reading suggestions:

» Tobias Gunther, Irene Baeza Rojo:

Introduction to Vector Field Topology
https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

» Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:

State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties

https://onlinelibrary.wiley.com/doi/epd£f/10.1111/cgf.14037

* B. Jobard, G. Erlebacher, M. Y. Hussaini:
Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization
http://dx.doi.org/10.1109/TVCG.2002.1021575

* Anna Vilanova, S. Zhang, Gordon Kindimann, David Laidlaw:
An Introduction to Visualization of Diffusion Tensor Imaging and lts Applications
http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf



Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field — tensor field)
 Gradient of vector field: how does the vector field change?

* In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

Uy uy U;
L these are
Vv (x,y ’ Z) _ Vx v)’ Vz partial derivatives!
Wy Wy W

« Can be decomposed into symmetric part + anti-symmetric part

Vv=D+S velocity gradient tensor

sym.: D=%(Vv+(VV)l) deform.: rate-of-strain tensor
skew-sym.: S=Y% (Vv —-(Vv)!) rotation: vorticity/spin tensor



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor
« Antisymmetric part of velocity gradient tensor

 Corresponds to vorticity/curl/angular velocity (beware of factor 1)

these are
S=1%(Vv—(VV)T) partia
derivatives!
0 -0 ) Wy — vy
S=v| o 0 — O=|wm | =VXv=[u,—wy
— O 0 3 Vy — Uy

S acts on vector like cross product with @: S » = %2 w x

viO= §dr =L Vv —(Vv)T] - dr = Lw xdr



Angular Velocity of Rigid Body Rotation

Rate of rotation

« Scalar »: angular displacement per unit time (rad s)
— Angle O at time t is O(t) = ot; ® = 2rf where fis the frequency (f = 1/T; s)

» Vector m: axis of rotation; magnitude is angular speed (if o is curl: speed x2)
— Beware of different conventions that differ by a factor of % !

Cross product of Y2m with vector to center of
rotation (r) gives linear velocity vector v (tangent)
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Velocity Gradient Tensor and Components (1) oS

Velocity gradient tensor

(here: in Cartesian coordinates)

- 0 0
av" §vx
VV: %Vy a—Vy
aivZ aivZ

| dx y

these are the same
partial derivatives
as before!



Velocity Gradient Tensor and Components (2) oS

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)

- H 9 dy 9 9 27
1], 28xVZ 8yvx;_8xv %zvX_i_ %x"
— _ | LY L2 9 Yy LZEEYY A T R4
D = 5 aaxv + 5 Vv ; 2ayva 52V ;—ayv
9 < g O < 9 Yy o .z
| ox Y +8zvx ay" +8zv 2az" _




Velocity Gradient Tensor and Components (3) oS

Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)

i d.x_ 0.y d.x_ 9 7]
1 0 8yvx ox” 3zvx ox”
2 T e oy 7

9 _ O 9 v Z4Y

L ox Y 8zvx 8yv 27" 0 _

1 0 —w. Wy ]
S = — W 0 — Wy w = V XV
| Wy W 0 |




Critical Point Analysis




Critical Points (Steady Flow!)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point

STANTAN

stream lines (LIC) critical points (v = 0)

Markus Hadwiger, KAUST 11



(Non-Linear) Dynamical Systems

Start with system of linear ODEs (with constant coefficients)

* Non-linear systems can be linearized around critical points

» Use linearization for characterization

x = Ax
.
dt

i ) =A
A is an n X n matrix — v X,
Vv = A.
dpy
dt X(O) = Xp
; solution: x(t) = e’*xg
dz.,
e characterize behavior
L dt -

through eigenvalues of A



Py

A Few Facts about Eigenvalues and —vectors

. c -85 . . .
The matrix L . ] has eigenvalues A\ =c+si A=c—si

with eigenvectors u; = {_li] Uy = [ +1i]

If ¢ = 0, this is a skew-symmetric matrix

Skew-symmetric matrices: “infinitesimal rotations” (infinitesimal generators of rot.)

e

For ¢ = cosf and s = sinf: 2x2 rotation matrix with A\, = €' cost + isiné

_ A2 =€ = cosfl —isinf
Eigenvalues

« Symmetric matrix: all eigenvalues are real

+ Skew-symmetric matrix: all eigenvalues are pure imaginary

Markus Hadwiger, KAUST 13



Euler's Formula

Can be derived from the infinite power series for exp(), cos(), sin()

1T

e =cosx +isinx | e¥=cosp+ising
sin @
I P o
e —|—1:O 0|cos ¢ I Re

Markus Hadwiger, KAUST 14



Critical Points (Steady Flow!)

Poincaré Diagram: Classification of Phase Portaits in the (det A, Tr A)-plane

degenerate sink

spiral sink

det A

A

A= (Tr A)*- 4det A

A<O A=0:

A>0

l

spiral source

uniform

degenerate source

motion
N
N
. \\
sink N

line of stable fixed points

=

saddle

%

> Tr A

>

line of unstable fixed points

15



Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable
(3 ) wwe=(
Exponentials of anti-symmetric matrices are rotation matrices
= (0 ) e = (S o)

Markus Hadwiger, KAUST 16



Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

X = (16 l(z)) exp (tX ) = (ell(; 312?)
Complex eigenvalues lead to rotation

(o 79 we-e (R0 )

lljz —atiw

Markus Hadwiger, KAUST 17



Classification of Critical Points

(Isolated) critical point (equilibrium point)
 Velocity vanishes (all components zero)
v(xc) =0 with v(xcte)#0 det( Vv(xc) ) =0
Characterize using velocity gradient Vv at critical point x

» Look at eigenvalues (and eigenvectors) of Vv

Fr 9@

Repelling node Saddle pmnt Attracting node Repelling focus Center Attracting focus
R, ,R,>0 R,<0,R,>0 R ,R,<0 R =R,>0 R, =R,=0 R =R,<0
I,=1=0 I,=5=0 fl=f:=lil .f,=-1:;&0 1,=-1,#0 L=-1,#0

the first three phase portraits are special cases, see later slides!



A Few Details (1)

Repelling/attracting nodes

* Do not necessarily imply that streamlines are straight lines
(do not confuse with the linear system of ODEs!)

* They are only straight lines when both eigenvalues are real and have
the same sign, and are also equal (as in the phase portraits before)

« If they are not equal:

Attracting Node
R1,R2<«0
n,12=0

Repelling Node
R1,R2>0
1,12=0

19



A Few Details (2)

What about skew axes?
 Both of the systems below have eigenvalues 3 and 6

« Jordan normal form (Jordan canonical form) gives details

4 1
2 5 20



Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix A there is an invertible P such that

P ' AP is one of the following Jordan matrices (all entries are real):

A0 A0 . .

— J, = defective matrix

Ji [o xj > 1 J ( )
A0 _[a b

I

Each of these has its corresponding rule for constructing P

« Example on prev. slide (the two eigenvectors are not orthogonal):
P_lll 12—14111_30
31 2 301 1]|2 5|[-1 2] [0 6

See also algebraic and geometric multiplicity of eigenvalues
21



Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix A there is an invertible P such that

P! AP is one of the following Jordan ices (all entries are real):

(defective matrix)

same eigenvalues,
trace, determinant!

Each of these has its corresponding rule for constructing P

« Example on prev. slide (the two eigenvectors are not orthogonal):

| I I [ I

See also algebraic and geometric multiplicity of eigenvalues

22



Another Example

P~'AP has form J| e [—1 —-3}
Eigenvalues:

A =-1 P:[l —1] P__IZF 1}
A=2




Jordan Form Characterization (1)

[ |

0 <A < Ag A1 <0 < A A1 <Ay <0
unstable node saddle stable node



Jordan Form Characterization (2)

Phase portraits corresponding to Jordan matrix A0
(matrix is defective: eigenspaces collapse, Jr = 1
geometric multiplicity less than algebraic multiplicity)

A<O A>0
stable improper node unstable improper node

25



Jordan Form Characterization (3)

Phase portraits corresponding to Jordan matrix 7 |:,l 0:|
q —
0O A

A <O A>0
stable star node unstable star node

26



Jordan Form Characterization (4)

Phase portraits corresponding to Jordan matrix 7 a —b
4 p—
b a
a <0 a = a >0

stable spiral node center unstable spiral node

27



Critical Points (Steady Flow!)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point

STANTAN

stream lines (LIC) critical points (v = 0)

Markus Hadwiger, KAUST 28



Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

Sources (red), sinks (blue), saddles (yellow)

Markus Hadwiger, KAUST 29



A~

Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

Saddle

Markus Hadwiger, KAUST 30



Index of Critical Points / Vector Fields

Poincaré index (in scalar field topology we had the Morse index)
« Can compute index (winding number) for each critical point
* Index of a region is the sum of the critical point indexes inside
« Sum of all indexes over a manifold is its Euler characteristic

Do a loop (Jordan curve) around each critical point: the index is its
(Brouwer) degree: integer how often the vector field along the loop turns
around (determined by angle 1-form integrated over oriented 1-manifold)

1 ’)/
index, = o da
7T A

index = +1 index = +1 mdex +1 index =-1

a = arctan -




Higher-Order Critical Points

Higher than first-order

« Sectors can by elliptic, parabolic, hyperbolic

Ne — Np

* For index sum over number of elliptic and hyperbolic sectors
2

. NI
7\@%

index +2 index +3 index -2 index -3

index.p, = 1+

(dipole) (see monkey saddle)

32



Example: Differential Topology

Topological information from vector fields on manifold
* Independent of actual vector field! Poincaré-Hopf theorem (sum of indexes == Euler char.)

» Useful constraints: vector field editing, simplification, sphere always has critical point, ...

Topological invariant: Euler characteristic y (M) of manifold M
(for 2-manifold mesh: y(M) =V —E+F)

=
P

genus g =0 genus g = 1 genus g =2
Euler characteristicy =2  Euler characteristic ¥ = 0  Euler characteristic y = —2

X =2 —2g (orientable)

P

Markus Hadwiger, KAUST 33



Example: Vector Field Editing

Guoning Chen et al., Vector Field Editing and Periodic Orbit
Extraction Using Morse Decomposition, IEEE TVCG, 2007

————

X

I

0

=3 \\:\\\/ﬁf—\(@%ﬁ
WO =
N m\\\\\\\\\(\\\\\%*

Markus Hadwiger, KAUST
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Recommended Books (1

Fluid Simulation -
for Computer Graphics Lontinuum le

Robert Bridson MEChaniES 1
& S A. J. M. Spencer grad

curl
and

all
that

fourth edition

h. m. schey




Recommended Books (2)

Michael Henle

Lawrence Perko

Eggegggﬂg'an ’ EIRE bk,
by Ordinary
Differential
Equations
A COMBINATORIAL
INTRODUCTION TO
TOPOLOGY

@ Springer

@ Springer



Thank you.




