
CS 247 – Scientific Visualization
Lecture 28: Vector / Flow Visualization, Pt. 7
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Reading Assignment #15++ (1)

Reading suggestions:
• Data Visualization book, Chapter 6.7

• J. van Wijk: Image-Based Flow Visualization,
ACM SIGGRAPH 2002
http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

• T. Günther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:
Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite 
Winds of an Atmospheric Karman Vortex Street, 2021
https://www.essoar.org/doi/10.1002/essoar.10506682.2

• H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition – A Survey, TVCG 19(8), 2013
https://doi.org/10.1109/TVCG.2012.316

• Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE (3Blue1Brown)

• Matrix exponentials:
https://www.youtube.com/watch?v=O85OWBJ2ayo (3Blue1Brown)
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Reading Assignment #15++ (2)

Reading suggestions:
• Tobias Günther, Irene Baeza Rojo:

Introduction to Vector Field Topology
https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

• Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:
State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties
https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.14037

• B. Jobard, G. Erlebacher, M. Y. Hussaini:
Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization
http://dx.doi.org/10.1109/TVCG.2002.1021575

• Anna Vilanova, S. Zhang, Gordon Kindlmann, David Laidlaw:
An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications
http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf
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Lagrangian vs. Eulerian

Eulerian
• Flow properties given at fixed spatial positions (grid points)

• Partial time derivative

Lagrangian
• Flow properties given for each particle (particles are moving)

• Material time derivative



Lagrangian vs. Eulerian 

• Lagrangian: move along with the particle

• Eulerian: consider fixed point in space, look at particles moving through

• Example for pixels: rotate image (a),
Lagrangian: move pixels forward (b),
Eulerian: fetch pixels from backward direction (c)
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Material Derivative (1)

The material time derivative (convective derivative) gives the rate 
of change when following a particle in the flow
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

We are given                      with four independent variables;

But now we want to go along a parameterized path with parameter t,
so x, y, z become dependent variables:

Along this path, our goal is now to compute the derivative of the function

with t as only independent variable:
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Advection

Advection equation; velocity field u( x, y, z, t ),
no change following particle, just advection:
set material derivative = 0:

In the Navier-Stokes equations: “self-advection” of velocity
• Advect scalar components of velocity field individually

(actually two equations in 2D, three equations in 3D)

this is equivalent to 
saying that the 
acceleration is zero!
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Fluid Simulation and Rendering

Compute advection of fluid
• (Incompressible or compressible) Navier-Stokes solvers

• Lattice Boltzmann Method (LBM)

Discretized domain
• Velocity, pressure

• Dye, smoke density,
vorticity, …

Courtesy Mark Harris



Fluid Simulation: Navier Stokes (1)

Incompressible (divergence-free) Navier Stokes equations

Components:
• Self-advection of velocity (i.e., advection of velocity according to velocity)

• Pressure gradient (force due to pressure differences)

• Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

• Application of (arbitrary) external forces, e.g., gravity, user input, etc.
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this is the velocity 
gradient tensor!



Fluid Simulation: Navier Stokes (2)

Given a (Cartesian) coordinate system, the momentum 
equation can be seen as a system of equations
(2 equations in 2D, 3 equations in 3D)

For 2D (Cartesian):

these are PDEs!



Vector Fields, Vector Calculus,
and Dynamical Systems

Vector Fields, Vector Calculus,
and Dynamical Systems



Some Vector Calculus (1)

Gradient (scalar field → vector field)
• Direction of steepest ascent; magnitude = rate

• Conservative vector field: gradient of some scalar (potential) function

Divergence (vector field → scalar field)
• Volume density of outward flux:

“exit rate: source? sink?”

• Incompressible/solenoidal/divergence-free vector field: div u = 0
can express as curl (next slide) of some vector (potential) function

Laplacian (scalar field → scalar field)
• Divergence of gradient

• Measure for difference between point and its neighborhood



Some Vector Calculus (2)

Curl (vector field → vector field)
• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Example:
curl = const
everywhere

these are partial 
derivatives!



Some Vector Calculus (3)

Curl (vector field → vector field)
• Circulation density at a point (vorticity)
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Some Vector Calculus (4)

Curl (vector field → vector field)
• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Example:
non-obvious
curl-free field

[this domain is not
simply connected! it is 
the “punctured plane”, 
i.e., the point (0,0) is 
not in the domain] velocity gradient v is 

symmetric (see later)

not defined at (x,y) = (0,0)

these are partial 
derivatives!



Some Vector Calculus (5)

Curl (vector field → vector field)
• Circulation density at a point (vorticity)

• If curl vanishes everywhere: irrotational/curl-free field

• Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

Book: Interactive tutorial on curl:
http://mathinsight.org/curl_idea

Fundamental theorem of vector calculus:
Helmholtz decomposition: Any vector field can be 
expressed as the sum of a solenoidal (divergence-free) 
vector field and an irrotational (curl-free) vector field
(Helmholtz-Hodge: plus harmonic vector field)

these are partial 
derivatives!



Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field → tensor field)
• Gradient of vector field: how does the vector field change?

• In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

v

• Can be decomposed into symmetric part + anti-symmetric part

v = D + S velocity gradient tensor

sym.: D = ½ ( v + (v)T ) deform.:    rate-of-strain tensor
skew-sym.: S = ½ ( v – (v)T ) rotation: vorticity/spin tensor

these are
partial derivatives!



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor
• Antisymmetric part of velocity gradient tensor

• Corresponds to vorticity/curl/angular velocity (beware of factor ½)

S = ½ ( v – (v)T )

S = ½

S acts on vector like cross product with     :   S    = ½

these are
partial
derivatives!



Angular Velocity of Rigid Body Rotation

Rate of rotation
• Scalar ω: angular displacement per unit time (rad s-1)

– Angle ϴ at time t is ϴ(t) = ωt; ω = 2πf where f is the frequency (f = 1/T; s-1)

• Vector ω: axis of rotation; magnitude is angular speed (if ω is curl: speed x2)
– Beware of different conventions that differ by a factor of ½ !

Cross product of ½ω with vector to center of
rotation (r) gives linear velocity vector v (tangent)



Velocity Gradient Tensor and Components (1)

Velocity gradient tensor
(here: in Cartesian coordinates)

these are the same
partial derivatives
as before!



Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor
(symmetric part; here: in Cartesian coordinates)



Velocity Gradient Tensor and Components (3)

Vorticity tensor (spin tensor)
(skew-symmetric part; here: in Cartesian coordinates)
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Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


