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Reading Assignment #15++ (1)

Reading suggestions:

Data Visualization book, Chapter 6.7
J. van Wijk: Image-Based Flow Visualization,

ACM SIGGRAPH 2002
http://www.win. tue.nl/~vanwijk/ibfv/ibfv.pdf

T. Gunther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:
Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite
Winds of an Atmospheric Karman Vortex Street, 2021

https://www.essoar.org/doi/10.1002/essoar.10506682.2

H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition — A Survey, TVCG 19(8), 2013

https://doi.org/10.1109/TVCG.2012.316

Work through online tutorials of multi-variable partial derivatives, grad, div, curl, Laplacian:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
https://www.youtube.com/watch?v=rB83DpBJQsE (3Blue1Brown)

Matrix exponentials:
https://www.youtube.com/watch?v=0850WBJ2ayo (3Blue1Brown)



Reading Assignment #15++ (2)

Reading suggestions:

» Tobias Gunther, Irene Baeza Rojo:

Introduction to Vector Field Topology
https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

» Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:

State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties

https://onlinelibrary.wiley.com/doi/epd£f/10.1111/cgf.14037

* B. Jobard, G. Erlebacher, M. Y. Hussaini:
Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization
http://dx.doi.org/10.1109/TVCG.2002.1021575

* Anna Vilanova, S. Zhang, Gordon Kindimann, David Laidlaw:
An Introduction to Visualization of Diffusion Tensor Imaging and lts Applications
http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf



Lagrangian vs. Eulerian




Lagrangian vs. Eulerian

Eulerian
» Flow properties given at fixed spatial positions (grid points)
- Partial time derivative
Lagrangian
» Flow properties given for each particle (particles are moving)

* Material time derivative

X4.4
b)

a) - ? .v) v/s

X0.0



Lagrangian vs. Eulerian

« Lagrangian: move along with the particle

» Eulerian: consider fixed point in space, look at particles moving through

« Example for pixels: rotate image (a),
Lagrangian: move pixels forward (b),
Eulerian: fetch pixels from backward direction (c)

Markus Hadwiger, KAUST 6



Material Derivative (1)

The material time derivative (convective derivative) gives the rate
of change when following a particle in the flow

D d
D_t — E‘F(U-V)

Markus Hadwiger, KAUST 7



Material Derivative (1)

The material time derivative (convective derivative) gives the rate
of change when following a particle in the flow

D J
= _ = .V
Dt 8t+(u )
DT 0T
Dr o TV
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Material Derivative (1)

The material time derivative (convective derivative) gives the rate
of change when following a particle in the flow

D 0
— - .V
Dt 8t+(u )
DT oT
D—t—E-I—(U-V)T
DT 9T o  oT  or
D: ot “ox oy "oz

Markus Hadwiger, KAUST 9



Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

aT aT dT dT

Markus Hadwiger, KAUST 10



Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

aT aT dT dT

aT dT dx dT dy dT dz
dT = —dt+ — —dt + — —dt + — —dt
ot T dx dt i dy dt T dz dt
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

aT aT dT dT

aT dT dx dT dy dT dz
dT = —dt+ — —dt + — —dt + — —dt
ot T dx dt i dy dt T dz dt

dT JdT 0T dx JTdy T dz
— =t —— =+
dt Jdt  Jdxdt Jdydt dz dt
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

aT aT dT dT

aT dT dx dT dy dT dz
dT = —dt+ — —dt + — —dt + — —dt
ot T dx dt i dy dt T dz dt
dT 0T 0T dx dTdy OJTdz
— =t ——+——+ =——
dt Jdt  Jdxdt Jdydt dz dt
_ dx . 9z
dt’ “a T ar

Markus Hadwiger, KAUST 13
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:
We are given T (x,y,z,t) with four independent variables;

But now we want to go along a parameterized path with parameter t,
SO X, Y, Z become dependent variables: x(1), y(t), z(1)

Along this path, our goal is now to compute the derivative of the function

T (x(t),y(t),z(t),t) with t as only independent variable:

d
ET(x(t)vJ’(f%Z(t),t) -
%T(x7y7Z7t)+%T(x’y"z”)%x(t)+5%T(x,y,z,t)%J’(r)+%T(xayazal‘)%z(f)
u(t) == "ZE’)= V(1) = d);_(tt) o) "3—5’)

Markus Hadwiger, KAUST 14



Advection

Advection equation; velocity field u( x, y, z, t),
no change following particle, just advection:
set material derivative = O:

oT
a—t—F(u-V)T:O

In the Navier-Stokes equations: “self-advection” of velocity
 Advect scalar components of velocity field individually

(actually two equations in 2D, three equations in 3D)

8_“ _ —(u ) V)u this is equivalent to
Ot saying that the
acceleration is zero!



Fluid Simulation Basics




Fluid Simulation and Rendering

Compute advection of fluid

* (Incompressible or compressible) Navier-Stokes solvers
« Lattice Boltzmann Method (LBM)

Discretized domain

 Velocity, pressure

* Dye, smoke density,
vorticity, ...

Courtesy Mark Harris



Fluid Simulation: Navier Stokes (1)

Incompressible (divergence-free) Navier Stokes equations

0 ]
— = —(u-V)u—-=-Vp+ 1V +F
Ot 0
V-u =0,
Components:

« Self-advection of velocity (i.e., advection of velocity according to velocity)
 Pressure gradient (force due to pressure differences)
« Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

 Application of (arbitrary) external forces, e.g., gravity, user input, etc.

Markus Hadwiger, KAUST 18



Fluid Simulation: Navier Stokes (1)

Incompressible (divergence-free) Navier Stokes equations

0 ]
8—11 — —(U _Vp —I’ I/V2U —|’ F,
"
\ this is the velocity

V- -u=0, gradient tensor!
Components:
« Self-advection of velocity (i.e., advection of velocity according to velocity)
 Pressure gradient (force due to pressure differences)
« Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

 Application of (arbitrary) external forces, e.g., gravity, user input, etc.

Markus Hadwiger, KAUST 19



Fluid Simulation: Navier Stokes (2)

Given a (Cartesian) coordinate system, the momentum
equation can be seen as a system of equations
(2 equations in 2D, 3 equations in 3D)

For 2D (Cartesian):
Ou _ —(u-V)u l(Vp)+ wWou + F,
Ot p
Ov 1
— = (0 V)o = —(Vp)+ W + f,.
Ot 0

these are PDES!



Vector Fields, Vector Calculus,

and Dynamical Systems




Some Vector Calculus (1)

Gradient (scalar field — vector field) v, — [8p 8p]

» Direction of steepest ascent; magnitude = rate

« Conservative vector field: gradient of some scalar (potential) function

Divergence (vector field — scalar field) 9 9
7 v

- Volume density of outward flux: Viu=—+4 —
“exit rate: source? sink?” Ox Oy

» Incompressible/solenoidal/divergence-free vector field: divu = 0
can express as curl (next slide) of some vector (potential) function

Laplacian (scalar field — scalar field) v 0° ap 0%p
 Divergence of gradient r = Ox” 8)/2

» Measure for difference between point and its neighborhood



Some Vector Calculus (2)

Curl (vector field — vector field) Wy —V;
» Circulation density at a point (vorticity) VXV = | u;—wy
VX - uy

« If curl vanishes everywhere: irrotational/curl-free field
these are partial

- Every conservative (path-independent) field is irrotational derivatives!
(and vice versa if domain is simply connected)

_/:/_/ P O s e i Y “\\\\'\\
7 ( b A A B A \\ \\\\ N
L] 4 / / >, Ve - \‘
Example: A A F i 5 5 e ey
curl = const AAA A 7o~~~ NN\
4 4 4 « A \ \ N
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everywhere VY NN
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Some Vector Calculus (3)

Curl (vector field — vector field) Wy —V;

VX_uy

« Circulation density at a point (vorticity)

« If curl vanishes everywhere: irrotational/curl-free field

these are partial
derivatives!

» Every conservative (path-independent) field is irrotational
(and vice versa if domain is simply connected)

i 1 Y

Example:
curl not
always
“obviously
rotational”

- - - - —-—
-— - - -— -

o g
-
- o o <« <« <« <« <« <« <« <« <« <« <=

- - -
-~
- - - - - - - - - - - - - -
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- - - - —-—
-— e - -— -



Some Vector Calculus (4)

Curl (vector field — vector field) Wy —V;

VX_uy

« Circulation density at a point (vorticity)

« If curl vanishes everywhere: irrotational/curl-free field

: . : . . these are partial
» Every conservative (path-independent) field is irrotational derivatives!

(and vice versa if domain is simply connected)

Example:

non-obvious B 2 A = @R N R R - (~y,2,0)
: ’ ’ ’ - - X V(‘Tny: Z) T

curl-free field o > ‘ z2 | y?

not defined at (x,y) = (0,0)

...

-

-
-

[this domain is not

simply connected! it is

the “punctured plane”,

i.e., the point (0,0)is + » » ~ ~ =~ = ~

not in the domain] o o~ o~ = - - - - < -« velocity gradient Vv is
symmetric (see later)

,.

-~

.
-

/
/
\
\

Vx:My VXV:D



Some Vector Calculus (5)

Curl (vector field — vector field) Wy —V;
VX - uy

« Circulation density at a point (vorticity)

« If curl vanishes everywhere: irrotational/curl-free field

: . : . . these are partial
» Every conservative (path-independent) field is irrotational

. _ T derivatives!
(and vice versa if domain is simply connected)
Book: div Interactive tutorial on curl:
gl“ad S, http://mathinsight.org/curl idea

curl

agﬂ Fundamental theorem of vector calculus:

i Helmholtz decomposition: Any vector field can be
L expressed as the sum of a solenoidal (divergence-free)
foREt vector field and an irrotational (curl-free) vector field
h.m. schey (Helmholtz-Hodge: plus harmonic vector field)




Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field — tensor field)
 Gradient of vector field: how does the vector field change?

* In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

Uy uy U;
L these are
Vv (x,y ’ Z) _ Vx v)’ Vz partial derivatives!
Wy Wy W

« Can be decomposed into symmetric part + anti-symmetric part

Vv=D+S velocity gradient tensor

sym.: D=%(Vv+(VV)l) deform.: rate-of-strain tensor
skew-sym.: S=Y% (Vv —-(Vv)!) rotation: vorticity/spin tensor



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor
« Antisymmetric part of velocity gradient tensor

 Corresponds to vorticity/curl/angular velocity (beware of factor 1)

these are
S=1%(Vv—(VV)T) partia
derivatives!
0 -0 ) Wy — vy
S=v| o 0 — O=|wm | =VXv=[u,—wy
— O 0 3 Vy — Uy

S acts on vector like cross product with @: S » = %2 w x

viO= §dr =L Vv —(Vv)T] - dr = Lw xdr



Angular Velocity of Rigid Body Rotation

Rate of rotation

« Scalar »: angular displacement per unit time (rad s)
— Angle O at time t is O(t) = ot; ® = 2rf where fis the frequency (f = 1/T; s)

» Vector m: axis of rotation; magnitude is angular speed (if o is curl: speed x2)
— Beware of different conventions that differ by a factor of % !

Cross product of Y2m with vector to center of
rotation (r) gives linear velocity vector v (tangent)
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Velocity Gradient Tensor and Components (1) oS

Velocity gradient tensor

(here: in Cartesian coordinates)

- 0 0
av" §vx
VV: %Vy a—Vy
aivZ aivZ

| dx y

these are the same
partial derivatives
as before!



Velocity Gradient Tensor and Components (2) oS

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)

- H 9 dy 9 9 27
1], 28xVZ 8yvx;_8xv %zvX_i_ %x"
— _ | LY L2 9 Yy LZEEYY A T R4
D = 5 aaxv + 5 Vv ; 2ayva 52V ;—ayv
9 < g O < 9 Yy o .z
| ox Y +8zvx ay" +8zv 2az" _




Velocity Gradient Tensor and Components (3) oS

Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)

i d.x_ 0.y d.x_ 9 7]
1 0 8yvx ox” 3zvx ox”
2 T e oy 7

9 _ O 9 v Z4Y

L ox Y 8zvx 8yv 27" 0 _

1 0 —w. Wy ]
S = — W 0 — Wy w = V XV
| Wy W 0 |




Recommended Books (1

Fluid Simulation -
for Computer Graphics l:Dl'ltlnuum

RobertBidson Mechanics VISCOUS
il A. 1. M. Spencer FLUID FLOW




Recommended Books (2)

div

orad

Lawrence Perko

William A. Adkins
Mark G. Davidson

Differential

. 1 Equationsl and

ur namica -

2 Sgstems Ordmary.

and Ly Differential
all Equations

that

fourth edition

h. m. schey

& Springer

@ Springer




Thank you.




