
CS 247 – Scientific Visualization
Lecture 24: Vector / Flow Visualization, Pt. 3
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Reading Assignment #13 (until Apr 25)

Read (required):
• Data Visualization book

– Chapter 6.1 (Divergence and Vorticity)

• Diffeomorphisms / smooth deformations
https://en.wikipedia.org/wiki/Diffeomorphism

• Integral curves: Stream lines, path lines, streak lines
https://en.wikipedia.org/wiki/Integral_curve

https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines

• Paper:
Bruno Jobard and Wilfrid Lefer
Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498
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Quiz #3: Apr 25

Organization
• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments (except optional ones)

• Programming assignments (algorithms, methods)

• Solve short practical examples



Vector Fields

Each vector is usually thought of as a velocity vector
• Example for actual velocity: fluid flow

• But also force fields, etc. (e.g., electrostatic field)

vectors given at grid points vectors given at particle positions



Vector Fields

Each vector is usually thought of as a velocity vector
• Example for actual velocity: fluid flow

• But also force fields, etc. (e.g., electrostatic field)

Each vector in a vector field
lives in the tangent space
of the manifold at that point:

Each vector is a tangent vector

image from wikipedia



Vector Fields

Vector fields on general manifolds      (not just Euclidean space)

Tangent space at a point             :

Tangent bundle: Manifold of all tangent spaces
over base manifold

Vector field: Section of tangent bundle
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Interlude: Coordinate ChartsInterlude: Coordinate Charts



Interlude: Coordinate Charts

Coordinate chart
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Interlude: Coordinate Charts

Coordinate chart

Coordinate functions
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Interlude: Coordinate Charts

Coordinate charts Atlas
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Coordinate charts Atlas
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Vector Fields vs. Vectors in Components

Because Euclidean space is most common, often slightly sloppy notation
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Vector Fields vs. Vectors in Components
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Vector Fields vs. Vectors in Components
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Need basis vector fields

Vector Fields vs. Vectors in Components
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Need basis vector fields

Vector Fields vs. Vectors in Components
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Need basis vector fields

Vector Fields vs. Vectors in Components

Coordinate basis:
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Examples of Coordinate Curves and Bases

Coordinate functions, coordinate curves, bases
• Coordinate functions are real-valued (“scalar”) functions on the domain

• On each coordinate curve, one coordinate changes, all others stay constant

• Basis: n linearly independent vectors at each point of domain
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Cartesian coordinates polar coordinates
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Flow Field Example (1)

Potential flow around a circular cylinder
https://en.wikipedia.org/wiki/Potential_flow_around_a_circular_cylinder

Inviscid, incompressible flow that is irrotational (curl-free) and can be modeled as the gradient 
of a scalar function called the (scalar) velocity potential

images from wikipedia



Flow Field Example (2)

Depending on Reynolds number, turbulence will develop
Example: von Kármán vortex street: vortex shedding
https://en.wikipedia.org/wiki/Karman_vortex_street

images from wikipedia
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Steady vs. Unsteady Flow

• Steady flow: time-independent

• Flow itself is static over time:

• Example: laminar flows

• Unsteady flow: time-dependent

• Flow itself changes over time: 

• Example: turbulent flows

(here just for Euclidean domain; analogous on general manifolds)
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Direct vs. Indirect Flow Visualization

• Direct flow visualization

• Overview of current flow state 

• Visualization of vectors: arrow plots (“hedgehog” plots)

• Indirect flow visualization

• Use intermediate representation: vector field integration over time

• Visualization of temporal evolution

• Integral curves: streamlines, pathlines, streaklines, timelines

• Integral surfaces: streamsurfaces, pathsurfaces, streaksurfaces
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26

Direct vs. Indirect Flow Visualization



Integral Curves: IntroIntegral Curves: Intro



Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion



Particle Trajectories
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Courtesy Jens Krüger



Particle Trajectories
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Courtesy Jens Krüger



Particle Trajectories
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Courtesy Jens Krüger



Particle Trajectories
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Courtesy Jens Krüger



Integral Curves
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Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

Streamline

● Curve parallel to the vector field in each point for a fixed time

Pathline

● Describes motion of a massless particle over time

Streakline

● Location of all particles released at a fixed position over time

Timeline

● Location of all particles released along a line at a fixed time



Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector 
fields (unsteady flow)
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Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension
• Tangent curves to a (n + 1)-dimensional vector field

Stream Lines                                  Path Lines
Markus Hadwiger, KAUST 36



Numerical IntegrationNumerical Integration



Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

Flow Visualization: Geometry-Based Methods

● Numerical integration of stream lines:

● approximate streamline by polygon xi

● Testing example:
● v(x,y) = (-y, x/2)^T
● exact solution: ellipses
● starting integration from (0,-1)

x

y
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Bonus Slides:
Vectors as Derivative Operators

Bonus Slides:
Vectors as Derivative Operators



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction
• From this viewpoint, the vector is a derivative operator (actually, a derivation)

• Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)
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Kronecker delta 
(“identity matrix”)



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction
• From this viewpoint, the vector is a derivative operator (actually, a derivation)

• Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

For vector field: obtain directional derivative at each point

Markus Hadwiger, KAUST

(remember that this just 
looks scary (maybe) ...)

Kronecker delta 
(“identity matrix”)



Thank you.

Thanks for material
• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


