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Reading Assignment #13 (until Apr 25)

Read (required):
» Data Visualization book
— Chapter 6.1 (Divergence and Vorticity)
» Diffeomorphisms / smooth deformations
https://en.wikipedia.org/wiki/Diffeomorphism
* Integral curves: Stream lines, path lines, streak lines

https://en.wikipedia.org/wiki/Integral curve

https://en.wikipedia.org/wiki/Streamlines, streaklines, and pathlines
» Paper:

Bruno Jobard and Wilfrid Lefer

Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498



Quiz #3: Apr 25

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
* Reading assignments (except optional ones)
* Programming assignments (algorithms, methods)

» Solve short practical examples



Vector Fields

Each vector is usually thought of as a velocity vector

« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)
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Vector Fields

Each vector is usually thought of as a velocity vector
« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)

Each vector in a vector field
lives in the tangent space
of the manifold at that point:

Each vector is a tangent vector

"M

image from wikipedia



Vector Fields

Vector fields on general manifolds M (not just Euclidean space)

Tangent space at a point x € M : M
M

Tangent bundle: Manifold of all tangent spaces
over base manifold

wn: TM—M

Vector field: Section of tangent bundle

s:M—TM.
x> s(x). 7 (s(x)) =x

Markus Hadwiger, KAUST image from wikipedia



Vector Fields

Vector fields on general manifolds M (not just Euclidean space)

Tangent space at a point x € M : M
M

Tangent bundle: Manifold of all tangent spaces
over base manifold

wn: TM—M

Vector field: Section of tangent bundle

v:M—TM,
x = v(x). v(x) € TM

Markus Hadwiger, KAUST image from wikipedia



Interlude: Coordinate Charts




Interlude: Coordinate Charts

Coordinate chart
o:UCM— R”,

x> (xlx% . x.

Markus Hadwiger, KAUST




Interlude: Coordinate Charts

Coordinate chart
o:UCM— R”,

x> (xlx% . x.

Coordinate functions

X:UcCM-—R,

x> x'(x).

Markus Hadwiger, KAUST




Interlude: Coordinate Charts

Coordinate charts Atlas

¢o: Ug CM — R", {(Ua’%‘)}ael

x|—>(x1,x2,...,x”).
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Interlude: Coordinate Charts

Coordinate charts Atlas

¢o: Ug CM — R", {(Ua’%‘)}ael

x|—>(x1,x2,...,x”).

0n: Uy C M —R",
x> (1 (x), 22 (x),..., 2" (x)).

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

Because Euclidean space is most common, often slightly sloppy notation

\ ' UC]R2—>R2,

(x,y) > H .

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

Because Euclidean space is most common, often slightly sloppy notation

\ ' UC]R2—>R2,

(x,y) > H .
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Vector Fields vs. Vectors in Components

Because Euclidean space is most common, often slightly sloppy notation

v: U CR? 5 R?, v:UCR’ >R,
u a
X,V) = .
)[4 Gy |
W
v: U CR*> > R? v:UCR' =R,
u(,) uang)
(x,y) = (v(x,y)) ’ ()C,y,Z) — V(xayaz)
w(x,y,z)

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

v: UCR'— R",

1
V2

S ST NES
v.”

v: U CR"— R",

(v;(xi,xz,...,x”)\
vo(xt,x, .., x)

(xl,xz, LX) :
Va2, )

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

v: UCR'— R",

- ¢ | ¢(U) CR"
pl
v2 I
S ST NES
v.”
v: U CR"— R", V‘U3¢(U)CRR—>R'17
- -
(vl(xl,xz,. ,x”)\ v
VA X ey ) | 9 . V2
(xl,xz, X)) _ (X7, X7, x")
V(e o2, ) ) v

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

Need basis vector fields

e,:UCM—-TM,

n .
ei(x)¢. basis for T,.M
x — e;(x) teil )}’:1 *

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

Need basis vector fields

ei:UCM-—->TM,

n .
ei(x)¢. basis for T,.M
x> e;(x) { i )}121 *

v:UCM—TM,

x> viep +1v%e +... +1V",.

v:UCM—=TM,
x = vi(x)e; (x) + v (x)ea(x) + ...+ (x) en(x).

Markus Hadwiger, KAUST



Vector Fields vs. Vectors in Components

Need basis vector fields

. Coordinate basis:
¢i: UCM—=TM, {ei(x) }?_1 basis for T,M 3
ox!

v:UCM—TM,

X — vlel —I—v2e2—|—...+v"en.

v:UCM—=TM,
x = vi(x)e; (x) + v (x)ea(x) + ...+ (x) en(x).

Markus Hadwiger, KAUST



Examples of Coordinate Curves and Bases

Coordinate functions, coordinate curves, bases
« Coordinate functions are real-valued (“scalar”) functions on the domain
» On each coordinate curve, one coordinate changes, all others stay constant

 Basis: n linearly independent vectors at each point of domain

Cartesian coordinates polar coordinates
2 . 2 Y
xX° = x*=20 :
y J & "
e —= i —i 1 a _
e I J J
p=Ew—= e =—==
dy 2700

Markus Hadwiger, KAUST 21



images from wikipedia
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of a scalar function called the (scalar) velocity potential

Inviscid, incompressible flow that is irrotational (curl-

Potential flow around a circular cylinder
https://en.wikipedia.org/wiki/Potential flow around

Flow F




Flow Field Example (2)

Depending on Reynolds number, turbulence will develop

Example: von Karman vortex street: vortex shedding

https://en.wikipedia.org/wiki/Karman vortex street

images from wikipedia



Steady vs. Unsteady Flow

« Steady flow: time-independent
- Flow itself is static over time:  v(x) v: R" - R",

« Example: laminar flows x = v(x).
» Unsteady flow: time-dependent
- Flow itself changes over time: v(x,?) v: R" xR — R",

« Example: turbulent flows (x,1) = v(x,1).

(here just for Euclidean domain; analogous on general manifolds)

Markus Hadwiger, KAUST 24



Direct vs. Indirect Flow Visualization

* Direct flow visualization
* Overview of current flow state

* Visualization of vectors: arrow plots (“hedgehog” plots)

* Indirect flow visualization
» Use intermediate representation: vector field integration over time
* Visualization of temporal evolution
* Integral curves: streamlines, pathlines, streaklines, timelines

* Integral surfaces: streamsurfaces, pathsurfaces, streaksurfaces

Markus Hadwiger, KAUST 25



Direct vs. Indirect Flow Visualization




Integral Curves: Intro




Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion

SN



Particle Trajectories

Courtesy Jens Krluger
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Particle Trajectories

PIPAST

VAR A
A AN

Courtesy Jens Krluger
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Particle Trajectories

RERERE
frtrittt

P IS

SELEER
AN A

Courtesy Jens Krluger
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Particle Trajectories

Courtesy Jens Krluger
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Integral Curves

Streamlines Pathlines Streaklines

Particle trajectory Particle trajectory Trace of particles
at fixed time step in unsteady flow released into flow
at fixed position




Streamline

e Curve parallel to the vector field in each point for a fixed time

Pathline

e Describes motion of a massless particle over time

Streakline

e Location of all particles released at a fixed position over time

Timeline

e Location of all particles released along a line at a fixed time

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector
fields (unsteady flow)

Markus Hadwiger, KAUST Tino Weinkauf 35



Py

Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

» Tangent curves to a (n + 1)-dimensional vector field

Stream Lines Path Lines

Markus Hadwiger, KAUST 36



Numerical Integration




Flow Visualization: Geometry-Based Methods

e Numerical integration of stream lines:

e approximate streamline by polygon x;

e Testing example:
o V(xy)=(-y, XI2)"T
e exact solution: ellipses
e starting integration from (0,-1)

, i Jj

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Streamlines — Practice

® Basic approach:
@ theory: s(f) = sg + [y, V(S(U))du
@ practice: numerical integration

@ dea:
(very) locally, the solution is (approx.) linear

@ Euler integration:
follow the current flow vector v(s;) from the current
streamline point s; for a very small time (df) and
therefore distance

@ Euler integration: s, , =s, + df- v(s)),
iIntegration of small steps (dt very small)

Helwig Hauser 6



Euler Integration — Example

® 2D model data: v, = dx/df =~y
v, = dy/dt = x/2
@ Sample arrows:
« d! \ .
/ ] 1
@ True )| )\ 0 o *
solution: " 2/'3 4
ellipses! A 4 -

Helwig Hauser



Euler Integration — Example

® Seed points, = (0-1)T;
current flow vector v(s,) = (1]0)T;
dt=1/2

Helwig Hauser 8



Euler Integration — Example

® New points, = s, + v(s,)-dt = (1/2]-1)T;
current flow vector v(s,) = (1|1/4)T;

Helwig Hauser 9



Euler Integration — Example

® New points, =s, + v(s,)-dt=(1]-7/8)T;
current flow vector v(s,) = (7/8]1/2)T;

Helwig Hauser 10



Euler Integration — Example

.s, = (23/16-5/8)T ~ (1.44-0.63)T;
v(s,) =(5/8]23/32)T =~(0.63]0.72)";

Helwig Hauser 1"



Euler Integration — Example

|s,

V(S,)

Helwig Hauser

= (7/4|-17/64)T

= (17/64|7/8)7

(1.75]-0.27)T;
(0.27(0.88)T;

& &

| \A
‘/‘1. |
A 4 J/’
v\ . >

12



Euler Integration — Example

0.20]1.69)T:

® Sy (
(-1.69(0.10);

v(Sg)

& &

Helwig Hauser 13



Euler Integration — Example

’s, ~ (-3.22]-0.10)T;
v(s.,)  ~(0.10]-1.61)T:

Helwig Hauser 14



Euler Integration — Example

@ s~ (0.75)-3.02)"; v(s,o) ~ (3.02]|0.37)7;
clearly: large integration error, df too large!
19 steps

Helwig Hauser



Euler Integration — Example

@ df smaller (1/4): more steps, more exact!
S~ (0.04-1.74)"; v(s,) =~ (1.74|0.02)T;

@ 36 steps

Helwig Hauser 16



Comparison Euler, Step Sizes @

Euler

Is getting
better
propor-
tionally
to dt

Helwig Hauser

17

—a— Euler dit=1/10

—#—FEuler dit=1/4

-1 —#—Euler di=1:2

Euler dt=1/100




Better than Euler Integr.: RK

® Runge-Kutta Approach:
@ theory:  s(f) =sy+ o V(S(U))du
@ Euler: S, =8g+ X5 V(S dt
® Runge-Kutta integration:

@ idea: cut short the curve arc

® RK-2 (second order RK):
1.. do half a Euler step
2.. evaluate flow vector there
3.: use it in the origin

® RK-2 (two evaluations of v per step):
S, =8+ V(s+v(s)dt/2) dt

Helwig Hauser 19



RK-2 Integration — One Step

® Seed points, = (0-2);
current flow vector v(s,) = (2|0)T;
preview vector v(s,+v(s,)-dt/2) =(2|0.5)T;
df =1

Helwig Hauser 20



RK-2 — One more step

® Seed points, = (2|-1.5)7;
current flow vector v(s,) = (1.5]|1)';
preview vector v(s,+v(s,)-dt/2) ~(1|1.4)T;

dt = 1 ‘_
< 3| \ _

Helwig Hauser 21



RK-2 — A Quick Round

® RK-2: even with df=1 (9 steps)

better

than Euler

with dt=1/8
(72 steps)

___________

____________

—&—RK2, dt=1 —

- —¢— Euler, dt=1/8 -

Helwig Hauser 22



RK-4 vs. Euler, RK-2

® Even better: fourth order RK:
@ fourvectorsa, b, c, d

@ one step Is a convex combination:
Si+1 - Si + (a+2b+2C+d)/6

@ vectors:

®a=dfv(s) ... original vector
eb=dtv(sta/2) ... RK-2 vector
ec=dfv(st+b/2) ...useRK-2...

®d=dlv(s+c) ... and again!

Helwig Hauser 23



Euler vs. Runge-Kutta

@ RK-4: pays off only with complex flows

@ Here
approx.

like
RK-2

1
1 o M1
i 3

Helwig Hauser 24

—¢— Euler, dt=1/2, 19 Schr.
—+4—Euler, dt=1/4, 38 Schritte
—ea—RK-2, dt=1/2, 182 Schritte
—s—Euler, dt=1/8, 72 Schritte
—8—RKA4, dt=172, 1874 Schritte




Integration, Conclusions

® Summary:

@ analytic determination of streamlines
usually not possible

® hence: numerical integration

® several methods available
(Euler, Runge-Kutta, etc.)

@ Euler: simple, imprecise, esp. with small dt
® RK: more accurate in higher orders

@ furthermore: adaptive methods, implicit methods,
etc.

Helwig Hauser 25
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Bonus Slides:

Vectors as Derivative Operators




Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

* From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM—=R, vf
x— f(x).

Markus Hadwiger, KAUST 60



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

* From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fIMSR, vfi=df(v)
x— f(x).
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

* From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM =R, vii=df(v) e;f :=df(e)
x— f(x).

Markus Hadwiger, KAUST 62



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

* From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM =R, vii=df(v) e;f :=df(e)
x— f(x).
9 9\ of

ﬁf:df(ﬁ)Zﬁ
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

* From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM=R, vii=df(v) e;.f:=df(e)

o f) %, % df % %
v L v _YJ v . . . g o j
dxt f=df (8xf) - oxt dxt X = dx (axi) _/Bi

Kronecker delta
(“identity matrix”)

Markus Hadwiger, KAUST 64



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

* From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

f:M—R, vi:=df(v) e;.f :=df(e;)

o f) %, % df % %
v L v _YJ v . . . g o j
dxt f=df (8xf) - oxt dxt X = dx (axi) _/Bi

For vector field: obtain directional derivative at each point Kronecker delta
(“identity matrix”)
vi: M — R,

x> v(x) f=df(v(x)). (remember that this just

looks scary (maybe) ...
Markus Hadwiger, KAUST y ( y ) )



Thank you.




