

KAUST

CS 247 – Scientific Visualization Lecture 20: Volume Rendering, Pt. 7

Markus Hadwiger, KAUST

Reading Assignment #11 (until Apr 11)

Read (required):

- Real-Time Volume Graphics, Chapter 10 (Transfer Functions Reloaded)
- Paper:

Joe Kniss, Gordon Kindlmann, Charles Hansen,

Multidimensional Transfer Functions for Interactive Volume Rendering, *IEEE Transactions on Visualization and Comp. Graph. (TVCG) 2002,*

https://ieeexplore.ieee.org/document/1021579

Read (optional):

Real-Time Volume Graphics, Chapter 14
(Non-Photorealistic and Illustrative Techniques)

More on Transfer Functions

Classification – Transfer Functions

During Classification the user defines the "look" of the data.

- Which parts are transparent?
- Which parts have what color?

The user defines a *transfer function*.

Pre-vs Post-Interpolative Classification

PRE-INTERPOLATIVE

POST-INTERPOLATIVE

Quality: Pre- vs. Post-Classification

Comparison of image quality

Pre-Classification

Post-Classification

same TF, same resolution, same sampling rate

Quality: Pre- vs. Post-Classification

Pre-Classification

Post-Classification

Pre- vs Post-Classification

Quality comparison

128 Slices

284 Slices

128 Slabs

© Weiskopf/Machiraju/Möller

Quality comparison

128 Slices

284 Slices

128 Slabs

© Weiskopf/Machiraju/Möller

Post-vs. Pre-Integrated Classification

2D (or higher) Transfer Functions

Transfer function look-up with more than one attribute

• T(scalar value, ... additional attributes ...)

Additional attributes:

- Derivatives (most common: gradient magnitude)
- Segmentation information (integer label IDs)
- Curvature (of isosurface going through each point)
- Spatial position
- ...

2D (or higher) Transfer Functions

Derivatives indicate where material boundaries are located

Figure 10.2. Relationships between f, f', f'' in an ideal boundary.

1D transfer function

Horizontal axis: scalar value

Vertical axis: number of voxels

1D histogram

2D transfer function

Horizontal axis: scalar value

Vertical axis: gradient magnitude

Brightness: number of voxels (here: darker means more)

1D transfer function Horizontal axis: scalar value Vertical axis: number of voxels

2D transfer function

Horizontal axis: scalar value

Vertical axis: gradient magnitude

Comparisons

[Kniss et al. 2002]

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama