

KAUST

CS 247 – Scientific Visualization Lecture 15: Volume Rendering, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #8 (until Mar 21)

Read (required):

- Real-Time Volume Graphics, Chapter 1 (*Theoretical Background and Basic Approaches*), from beginning to 1.4.4 (inclusive)
- Real-Time Volume Graphics, Chapter 4 (Transfer Functions) until Sec. 4.4 (inclusive)

• Look at:

Nelson Max, Optical Models for Direct Volume Rendering, IEEE Transactions on Visualization and Computer Graphics, 1995 http://dx.doi.org/10.1109/2945.468400

Quiz #2: Mar 23

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments (except optional ones)
- Programming assignments (algorithms, methods)
- Solve short practical examples

Volume Visualization

VolVis: Theory

Direct Volume Rendering

Direct Volume Rendering

Direct Volume Rendering

Direct Volume Rendering: Object Order

Physical Model of Radiative Transfer

Volume Rendering Integral Summary

Volume rendering integral for *Emission Absorption* model

$$I(s) = I(s_0) e^{-\tau(s_0,s)} + \int_{s_0}^{s} q(\tilde{s}) e^{-\tau(\tilde{s},s)} d\tilde{s}$$

Numerical solutions:

Back-to-front compositing

$$C'_i = C_i + (1 - A_i)C'_{i-1}$$

here, all colors are associated colors!

Front-to-back compositing

$$C'_{i} = C'_{i+1} + (1 - A'_{i+1})C_{i}$$

$$A'_{i} = A'_{i+1} + (1 - A'_{i+1})A_{i}$$

How do we determine the radiant energy along the ray? *Physical model:* emission and absorption, no scattering

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

Every point \tilde{s} along the viewing ray emits additional radiant energy

$$I(s) = I(s_0) e^{-\tau(s_0,s)} + \int_{s_0}^{s} q(\tilde{s}) e^{-\tau(\tilde{s},s)} d\tilde{s}$$

Optical depth:
$$au(0,t) = \int_0^t \kappa(\hat{t}) d\hat{t}$$

Approximate Integral by Riemann sum:

$$\tau(0,t) \approx \sum_{i=0}^{\lfloor t/\Delta t \rfloor} \kappa(i \cdot \Delta t) \,\Delta t$$

$$A_i = 1 - e^{-\kappa(i \cdot \Delta t) \,\Delta t}$$

$$1 - A_i = e^{-\kappa(i \cdot \Delta t) \,\Delta t}$$

$$1 - A_i = e^{-\kappa(i \cdot \Delta t) \,\Delta t}$$

$$1 - A_i = e^{-\kappa(i \cdot \Delta t) \,\Delta t}$$

can be computed recursively/iteratively!

Note: we just changed the convention from i=0 is at the front of the volume (previous slides) to i=0 is at the back of the volume !

can be computed recursively/iteratively:

Back-to-front compositing

$$C'_i = C_i + (1 - A_i)C'_{i-1}$$

Iterate from *i*=0 (back) to *i*=max (front): *i* increases

Front-to-back compositing

$$C'_{i} = C'_{i+1} + (1 - A'_{i+1})C_{i}$$

$$A'_{i} = A'_{i+1} + (1 - A'_{i+1})A_{i}$$

Iterate from *i*=max (front) to *i*=0 (back) : *i* decreases

Iterate from *i*=max (front) to *i*=0 (back) : *i* decreases

Volume Rendering Integral Summary

Volume rendering integral for *Emission Absorption* model

$$I(s) = I(s_0) e^{-\tau(s_0,s)} + \int_{s_0}^{s} q(\tilde{s}) e^{-\tau(\tilde{s},s)} d\tilde{s}$$

Numerical solutions:

Back-to-front compositing

$$C'_i = C_i + (1 - A_i)C'_{i-1}$$

here, all colors are associated colors!

Front-to-back compositing

$$C'_{i} = C'_{i+1} + (1 - A'_{i+1})C_{i}$$

$$A'_{i} = A'_{i+1} + (1 - A'_{i+1})A_{i}$$

VolVis: Opacity Correction

Opacity Correction

Simple compositing only works as far as the opacity values are correct... and they depend on the sample distance!

$$T_{i} = e^{-\int_{s_{i}}^{s_{i}+\Delta t} \kappa(t) dt} \approx e^{-\kappa(s_{i})\Delta t} = e^{-\kappa_{i}\Delta t}$$
$$A_{i} = 1 - e^{-\kappa_{i}\Delta t} \qquad \tilde{T}_{i} = T_{i}^{\left(\frac{\Delta \tilde{t}}{\Delta t}\right)}$$

$$\tilde{A}_i = 1 - (1 - A_i)^{\left(\frac{\Delta \tilde{t}}{\Delta t}\right)}$$

opacity correction formula

Beware that usually this is done for each different scalar value (every transfer function entry), not actually at spatial positions/intervals *i*

Associated Colors

Associated (or "opacity-weighted" colors) are often used in compositing equations

Every color is *pre-multiplied* by its corresponding opacity

Our compositing equations assume associated colors!

Important: After opacity-correction, all associated colors must be updated! (or combined/multiplied correctly on-the-fly!)

Standard emission-absorption optical model

- Only one kind of particle: the same particles that absorb light, emit light
- Aha! Therefore lower absorption means lower emission as well

$$C_{i} = \frac{q_{i}}{\kappa_{i}} \left(1 - e^{-\kappa_{i}\Delta t} \right) = \hat{C}_{i}A_{i}$$

$$q_{i} := \hat{C}_{i}\kappa_{i} \qquad \qquad \lim_{\kappa_{i}\to0} q_{i}\frac{\left(1 - e^{-\kappa_{i}\Delta t}\right)}{\kappa_{i}} = \lim_{\kappa_{i}\to0} \hat{C}_{i}\left(1 - e^{-\kappa_{i}\Delta t}\right) = 0$$

$$A_{i} := 1 - e^{-\kappa_{i}\Delta t} \qquad \qquad \lim_{\kappa_{i}\to\infty} q_{i}\frac{\left(1 - e^{-\kappa_{i}\Delta t}\right)}{\kappa_{i}} = \lim_{\kappa_{i}\to\infty} \hat{C}_{i}\left(1 - e^{-\kappa_{i}\Delta t}\right) = \hat{C}_{i}$$

Standard emission-absorption optical model

- Only one kind of particle: the same particles that absorb light, emit light
- Aha! Therefore lower absorption means lower emission as well

$$C_{i} = \frac{q_{i}}{\kappa_{i}} \left(1 - e^{-\kappa_{i}\Delta t} \right) = \hat{C}_{i}A_{i}$$

$$q_{i} := \hat{C}_{i}\kappa_{i}$$

$$\lim_{\kappa_{i}\to 0} q_{i}\frac{(1 - e^{-\kappa_{i}\Delta t})}{\kappa_{i}} = \lim_{\kappa_{i}\to 0} \hat{C}_{i}\left(1 - e^{-\kappa_{i}\Delta t}\right) = 0$$

$$\lim_{\kappa_{i}\to\infty} q_{i}\frac{(1 - e^{-\kappa_{i}\Delta t})}{\kappa_{i}} = \lim_{\kappa_{i}\to\infty} \hat{C}_{i}\left(1 - e^{-\kappa_{i}\Delta t}\right) = \hat{C}_{i}$$

Standard emission-absorption optical model

- Only one kind of particle: the same particles that absorb light, emit light
- Aha! Therefore lower absorption means lower emission as well

Standard emission-absorption optical model

- Only one kind of particle: the same particles that absorb light, emit light
- Aha! Therefore lower absorption means lower emission as well

$$C_{i} = \frac{q_{i}}{\kappa_{i}} \left(1 - e^{-\kappa_{i}\Delta t}\right) = \hat{C}_{i}A_{i}$$

$$q_{i} := \hat{C}_{i}\kappa_{i}$$

$$\lim_{\kappa_{i}\to 0} q_{i}\frac{\left(1 - e^{-\kappa_{i}\Delta t}\right)}{\kappa_{i}} = \lim_{\kappa_{i}\to 0} \hat{C}_{i}\left(1 - e^{-\kappa_{i}\Delta t}\right) = 0$$

$$\lim_{\kappa_{i}\to\infty} q_{i}\frac{\left(1 - e^{-\kappa_{i}\Delta t}\right)}{\kappa_{i}} = \lim_{\kappa_{i}\to\infty} \hat{C}_{i}\left(1 - e^{-\kappa_{i}\Delta t}\right) = C_{i}$$

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama