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CS 247 — Scientific Visualization
Lecture 14: Scalar Fields, Pt. 10;
Volume Rendering, Pt. 1

Markus Hadwiger, KAUST
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Reading Assignment #8 (until Mar 21)

Read (required):

» Real-Time Volume Graphics, Chapter 1
(Theoretical Background and Basic Approaches),
from beginning to 1.4.4 (inclusive)

» Real-Time Volume Graphics, Chapter 4 (Transfer Functions)
until Sec. 4.4 (inclusive)

* Look at:
Nelson Max, Optical Models for Direct Volume Rendering,
IEEE Transactions on Visualization and Computer Graphics, 1995
http://dx.doi.org/10.1109/2945.468400



wrapping up the previous part...
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Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

df(a,

floa, o) = (vio —vo0) + 02(voo +vi1 —vio —vo1)
8061

Jdf (o, o

f(aolcz o (vor —voo) + @1 (voo +vi1r —vio —vo1)

critical point
(saddle point)

Where are lines of constant value / critical points?

af(al ) 062) —0- o = Voo — V10 0% 50

8061 : VOO+V11 — V10 — V01 i : az
af(alaaZ) —0- o = Voo — Vo1

J Voo T V11 — V10 — Vol
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Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)
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Eigenvalues and eigenvectors (Hessian is symmetric: always real)
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(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)
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Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)
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Eigenvalues and eigenvectors (Hessian is symmetric: always real)
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(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)

—aand L =a
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Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)
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Eigenvalues and eigenvectors (Hessian is symmetric: always real)
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]

degenerate means determinant = 0 (at least one eigenvalue = 0);
bi-linear is simple: a = 0 means degenerated to

linear anyway: no critical point at all! (except constant function)
(but with more than one cell: can have max or min at vertices)




Interlude: Curvature and Shape Operator

Gauss map Differential of Gauss map
n: M — S’ dn: TM —TS?
X+ n(x) v i—dn(v)

(dn)y: TeM =Ty (S

v i—dn(v)

Shape operator (Weingarten map)

S:TM —TM
Principal curvature magnitudes and 2 ~ .
directions are eigenvalues and TH(X)S =1M Si: TheM — TeM
eigenvectors of shape operator S vV — SX(V) — dl‘l(V)
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Interlude: Curvature and Shape Operator

Gauss map Differential of Gauss map
n: M — S’ dn: TM —TS?
X+ n(x) v i—dn(v)

(dn)y: TeM =Ty (S

v i—dn(v)

Shape operator (Weingarten map)

S:TM —-TM
Principal curvature magnitudes and 2 ~ .
directions are eigenvalues and TH(X)S =1LM Si: TheM — TeM
eigenvectors of shape operator S V= Sx(V) — an
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Interlude: Curvature and Shape Operator

Gauss map Differential of Gauss map
n: M — S’ dn: TM —TS?
X+ n(x) v i—dn(v)

(dn)y: TeM =Ty (S

v i—dn(v)

Shape operator (Weingarten map)

S:TM —-TM
Principal curvature magnitudes and 2 ~ .
directions are eigenvalues and TH(X)S =1LM Si: TheM — TeM
eigenvectors of shape operator S vV — Sx(V) — _an

sign is convention
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General Case (2D Scalar Fields)

In 2D scalar fields, only three types of (isolated, non-degenerate) critical points

Index of critical point: dimension of eigenspace with negative-definite Hessian

minimum saddle point maximum
(index 0) (index 1) (index 2)
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Interesting Degenerate Critical Points?

Hessian matrix is singular (determinant = 0)
» Cannot say what happens: need higher-order derivatives, ...
Interesting example: monkey saddle z = 3 — 3:137,12 (‘third-order saddle’)

» Point (0,0) in center: Hessian = 0; Gaussian curvature = 0 (umbilical point)
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Discrete Classification of Critical Points

Combinatorial classification (looking at and comparing neighbors)
instead of looking at derivatives
(i.e., derivatives of the smooth function that is not known)

minimum saddle point maximum

...toward scalar field topology, discrete Morse theory, Morse-Smale complex, ...
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Example: Scalar Field Simplification
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Example: Differential Topology

Morse theory

» Morse function: scalar function where all critical points are
non-degenerate and have different critical value

Topological invariant: Euler characteristic y (M) of manifold M

(for 2-manifold mesh: y(M) =V —E+F)
X =2 —2g (orientable)

genus g =0 genus g = 1 genus g =2
Euler characteristicy =2  Euler characteristic ¥ = 0  Euler characteristic y = —2
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Example: Differential Topology

Morse theory

» Morse function: scalar function where all critical points are
non-degenerate and have different critical value

Topological invariant: Euler characteristic y (M) of manifold M

scalar function on torus is
height function f(x,y,z) =z :
i 1 1 min, 1 max, 2 saddles
I J J
x(M) =Y (=1)'m

i=0 critical points are where

df(x,y,z) =0

m;: number of critical (tangent plane horizontal)

points with index i

genus g(M) =
n: dimensionality of M Euler characteristic x(M) =0 (=1—2+1)

Markus Hadwiger, KAUST 16



Volume Visualization
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Volume Visualization

2D visualization
slice images
(or multi-planar
reformatting MPR)

* Indirect
3D visualization
isosurfaces
(or surface-shaded
display: SSD)

* Direct
3D visualization
(direct volume
rendering: DVR)




Direct Volume Rendering




Direct Volume Rendering




Transparent Volumes vs. Isosurfaces

The transfer function assigns optical properties to data
* Translucent volumes

 But also: isosurface rendering using step function as transfer function




Direct Volume Rendering

Image order approach

Image Plane

Eve

<q

Data Set

h'\

||I|,

For each pixel {

|
l 1

calculate color of the pixel
}




Physical Model of Radiative Transfer
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Physical Model of Radiative Transfer
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Volume Rendering Integral

Volume rendering integral /
for Emission Absorption model %

true emission true absorption

I(s) = I(sg)e 60" 1 / ¢(3) 7769 d3

Numerical solutions:
Back-to-front compositing Front-to-back compositing
C; = G+ (1 —-A)0, C = C 4+ (1-A.,)C,
A; — A/+1+( ;4—1)1473



Volume Rendering Integral

How do we determine the radiant energy along the ray?
Physical model: emission and absorption, no scattering

I(s0)
L—o->}>

S0 viewing ray s

AN

Initial intensity
at s

I(s) = |1(s0)




Volume Rendering Integral

How do we determine the radiant energy along the ray?
Physical model: emission and absorption, no scattering

I(s0) l
[

S0 viewing ray s

AN

Initial intensity
at s

\ Without absorption all
| the initial radiant energy
I(s) = |I(sp) would reach the point s.




Volume Rendering Integral

How do we determine the radiant energy along the ray?
Physical model: emission and absorption, no scattering

viewing ray

Absorption along the
ray segment s,- s

\

P—T(H().S)




Volume Rendering Integral

How do we determine the radiant energy along the ray?
Physical model: emission and absorption, no scattering

I(s0)
!-\*wD

S0 viewing ray s

Optical depth =
Absorption k

I(s) = I(sp) g~ 7(50:5) 7(s1,8) = /82 k(s) ds.

S1




Volume Rendering Integral

How do we determine the radiant energy along the ray?
Physical model: emission and absorption, no scattering

I(s0)
!\—*!hc»D

S0 5 viewingray s
One point s along the \
viewing ray emits additional Active emission
radiant energy. at point s

\

I(S) — I(S()) 6’,_7-(5”'5) o q(;)




Volume Rendering Integral

How do we determine the radiant energy along the ray?
Physical model: emission and absorption, no scattering

I(s0)
!\—*LA»D

A~

S0 s viewingray s

Every point S along the
viewing ray emits additional
radiant energy

* 5

I(S) — I(S()) €—T(s().s) _|_ / q(;) e—‘r(s.s) (1;

/50



Thank you.




