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CS 247 — Scientific Visualization
Lecture 12: Scalar Fields, Pt.8
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Reading Assignment #6 (until Mar 9)

Read (required):

» Real-Time Volume Graphics, Chapter 2
(GPU Programming)

» Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume lllumination)

» Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues and eigenvectors

Look at (optional):

* Riemannian Geometry for Scientific Visualization (notes and videos [part 1])
https://vccvisualization.org/RiemannianGeometryTutorial/



Gradient and Directional Derivative

Gradient Vf()gy7 Z) of scalar function f(x, V, Z) : (in Cartesian coordinates)

J J J !
v f(x,y,z)z( f(;;y72)7 f(;;yﬂ), f(g,zy,Z))

Directional derivative in direction u :
Duf(x,y,z) — Vf(x,y,z) u

And therefore also:
Dy f(x,y,2) = [|Vf]| |[u]| cos O
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Gradient and Directional Derivative

Gradient Vf()gy7 Z) of scalar function f(x, V, Z) : (in Cartesian coordinates)

J . 0 !
v f(xmz):( f(;c;y,zx f(;;yﬂ), f(;,zy,Z))

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

d d d
Vi(xy.2) = f(;;y,Z) (L f(;c;y,Z) it f(;,zy,Z) "
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What about the Basis?

On the previous slide, this actually meant

d d d
V(o2 = Lo i)+ LI )+ L2 ke

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Oy
j 7 XX

Cartesian - polar
coordinates 1 coordinates W
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

2,
df = fdx+ 8§ dy + ajzf

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms d f.dx.dy.dz takes direction vector as input, gives scalar output

In the expression of the gradient df above, all 1-forms on the right-hand side get
the same vector as input

df is simply a linear combination of the coordinate differentials dx,dy,dz
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

2, d d
df:a—idx+a—§dy+a—§dz

The directional derivative and the gradient vector

Dyf = df(u)
df(u)=Vf-u

The gradient vector is then defined, such that:
Vf-u:=df(u)
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Gradient Vectors and Differential 1-Forms

20}

15-

10-

O —\ L L L 1
20 -15 -10 5 0

from Wikipedia (for u a unit vector),
the function hereis  f(x,y) = X2 +y2

V(x.y) = 2xi+2yj



Gradient Vectors and Differential 1-Forms
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from Wikipedia (for u a unit vector),
the function hereis  f(x,y) = x> +y?

Vf(x,y) =2xer+2ye,
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Gradient Vectors and Differential 1-Forms

20}
15}

10-

how about in polar coordinates?

©
7 X

from Wikipedia (for u a unit vector),
the function hereis  f(r,0) = r? i

Vf(r,0)=2re .+ Or—2 eg = 2re,

df(r,0) =2rdr+0d0 =2rdr "

(=)



Gradient Vectors and Differential 1-Forms

20}
15}

10-

how about in polar coordinates?

©
7 X

from Wikipedia (for u a unit vector),
the function here is  f(r,0) = r?

VI(r0)= 2rer+eg =2re,
df(r,0) =2rdr+0d0 = 2rdr 12




Gradient Vectors and Differential 1-Forms

different 1-forms
‘ ‘ ' : evaluated in some direction

MR

1-form (field) df

10-

(g

oF
L L L L 1
-20 -15 -10 -5 0

from Wikipedia (for u a unit vector),

the function hereis  f(r.0) =r
Vf(r,0)= 2rer+0r—2 eg =2re,

df(r,0) =2rdr+0d0 =2rdr 13
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Einstein Summation Convention (1)

Implicit summation over paired indices

» Pairs of “upstairs” and “downstairs” indices

—vle;+ver+...+ V',
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Einstein Summation Convention (2)

Implicit summation over paired indices

» Pairs of “upstairs” and “downstairs” indices

g(v,w) = glJV w Zguv w/

11 1 2
=gnv w +g8nv w +...+guV'w"
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Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

- Contravariant v=1le
« Covariant O=v0
. . . i
The gradient vector is a contravariant vector V=10,
af .
l

The gradient 1-form is a covariant vector (a covector) df = 34 dx
X

Very powerful; necessary for non-Cartesian coordinate systems

On (intrinsically) curved manifolds (sphere, ...):
Cartesian coordinates not even possible
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Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

 Contravariant v=1le
« Covariant O=v0
. . . i
The gradient vector is a contravariant vector V=10,
df

The gradient 1-form is a covariant vector (a covector) df = 5 dx’
X

This is also the fundamental reason why in graphics a normal vector
transforms differently: as a covector, not as a vector!

(typical graphics rule: n transforms with transpose of inverse matrix)
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Inner Products and Metric Tensor (Field)

Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)

(v,w) :=g(v,w) = |[v]|[|w[[cos 6
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Inner Products and Metric Tensor (Field)

Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)

(v,w) :=g(v,w) = |[v]|[|w[[cos 6

(vow) | |IVI[F = (v, V)
= g(v,w) =g(v,v)
= gij viw/ = gijv'v/
= vigw —vlgy
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Inner Products and Metric Tensor (Field)

Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)

i i 2D
(v W) 1= g(v.w) = ||v] || cos oo [on ]
Y1821 822
i i 1
2 _ 2 _ 1,1 271|811 812 |V
o) [IVP=tew) | IE= [ s
= g(v,w) =g(v,V)
= &ij viw/ =g,-jvivj
:VTgW :VTgV
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Inner Products and Metric Tensor (Field)

Symmetric, covariant second-order tensor field:

defines inner product on manifold (in each tangent space)

i 1 2D

(v W) 1= g(v.w) = ||v] || cos oo [on ]
Y1821 822
i 1,1
2 _ 2 _ 11 .21 (811 82| |V
o) [IVP=tew) | IE= [ s

= g(v,w) =g(v,V)
= gijv'w’ =gij¥'v' | Cartesian [t 0
— vigw —vigy coordinates: &7 0 1]

Iv[*=[" V2]

1
0
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Inner Products and Metric Tensor (Field)

Components of metric referred to coordinates

gij = (e;,€;)

A second-order tensor field is bi-linear, i.e.,
linear in each (vector/covector) argument separately

From bi-linearity we immediately get:

(V,W) = g(viei,wjej)
= viwj(ei,ej>

o
= gijv'w
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Gradient Vector from Differential 1-Form

The metric (and inverse metric) lower or raise indices
(i.e., convert between covariant and contravariant tensors)

V' :g”vj v‘eizg”vjei

. ; .
v, — gV Vi@ = giiv®

Inverse metric (contravariant)

1

8] = [gij]” g% g = 5}:

Kronecker delta behaves
like identity matrix
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Gradient Vector from Differential 1-Form

So the gradient vector is

ij Of
=50

Directional derivative via inner product:

d
(VF,) = ujg Sl ()

9
5 aj:dxf()
_df
ﬁdx ()

Markus Hadwiger, KAUST

Vector-valued 1-form

dr:dxiei
dr(-) =dx'(-)e,
e,
Vf dr:gkjg’ka—i:dxf
i of
Sfax dx
af . .
ﬁdx

24



Example: Polar Coordinates

Metric tensor and inverse metric for polar coordinates

L 0 G 10

Gradient vector from 1-form: raise index with inverse metric

vi=|% 9 [1 g] [er] _ 9 L9

Jr J8 or 296"
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Example: Polar Coordinates

Metric tensor and inverse metric for polar coordinates

L 0 G 10

Gradient vector from 1-form: raise index with inverse metric

If(r,6 1 9f(r,0
V(r.0) = f(g’; )er(r,G)—l—rz f(g’g ) eo(r.6)

don’t forget that all of this is position-dependent!
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Tensor Calculus

Highly recommended:

Very nice book, Pavel Grinfeld

I Introduction to
Tensor Analysis
and the Calculus
of Moving
Surfaces

complete lecture on Youtube!

@ Springer
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Thank you.




