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CS 247 - Scientific Visualization
Lecture 11: Scalar Fields, Pt.7
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Reading Assignment #6 (until Mar 7)

Read (required):

» Real-Time Volume Graphics, Chapter 2
(GPU Programming)

» Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume lllumination)

» Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues and eigenvectors

Look at (optional):

* Riemannian Geometry for Scientific Visualization (notes and videos [part 1])
https://vccvisualization.org/RiemannianGeometryTutorial/



Local Shading Equations

Standard volume shading adapts surface shading
Most commonly Blinn/Phong model

But what about the "surface" normal vector?

n
4

diffuse reflection specular reflection



Local lllumination Model: Phong Lighting Model ¢=

IPhong — Iambient + Idiffuse =+ Ispecular

e
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Liiffuse = kg My 14 cos ¥ if
kd Md Id max((n- l), )
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The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

a-b=) ab; a-b=|all|bl cosd
=1

(standard inner product in Cartesian coordinates)

Many uses:

Project vector onto another vector,
project into basis,
project into tangent plane,
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The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

Of Of Of\"*
g p— Vf p— : : (only _correct in Cartesian
or 8y 0z coordinates [see later lectures])
Local approximation to isosurface at any point: smaller
tangent plane = plane orthogonal to gradient scalar
-2 values
Normal of this isosurface: _
normalized gradient vector
(negation is common convention)
n — —g/|g‘ larger
scalar

values



(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences

» Cheap and quality often sufficient (2*3 neighbors in 3D) f i f
RERGRS

Discrete convolution filters on grid
 Image processing filters; e.g. Sobel (32 neighbors in 3D) ‘ ) L A
o o@ o o
Continuous convolution filters 00—
* Derived continuous reconstruction filters o000

* E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

f'(@o) f"(xo)
TR

f(il?o—Fh) = f(SC()) + h? +...

Forward differences / backward differences

f(CC() + h

S—’

— f(@o) + o(h)

—
8
.
]

f(xo)_ (Io—h) —l—O(h)

ol e
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Finite Differences

Central differences

f(xo+h) = flzo) + T T o
fleo—h) = flao) — Ly 4 L0y
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Central Differences

Need only two neighboring voxels per derivative

Most common method f(x, y+1, 7)
on a curve f(x, y, z+1)
f(x-1, v, 7) f(x+1, y, 7)
f(Xa ya Z'l)
f(X9 Y'la Z)
gx = 0'5( f(X"‘l, Y/ Z) - f(x_lr Y/ Z) )
= 0.5( £(x, y+1, z) - f£(x, y-1, .
Iy CEG yrLoE) =0 ymd ) ) in a volume

0-5( f(xr Y, Z'l'l) - f£(x, Y/ Z—l) )

Q
N
]



Gradient and Directional Derivative

Gradient Vf()gy7 Z) of scalar function f(x, V, Z) : (in Cartesian coordinates)

J J J !
v f(x,y,z)z( f(;;y72)7 f(;;yﬂ), f(g,zy,Z))

Directional derivative in direction u :
Duf(x,y,z) — Vf(x,y,z) u

And therefore also:
Dy f(x,y,2) = [|Vf]| |[u]| cos O
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Gradient and Directional Derivative

Gradient Vf()gy7 Z) of scalar function f(x, V, Z) : (in Cartesian coordinates)

J . 0 !
v f(xmz):( f(;c;y,zx f(;;yﬂ), f(;,zy,Z))

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

d J J
Vi(xy.2) = f(;;y,Z) (L f(;c;y,Z) it f(;,zy,Z) "
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What about the Basis?

On the previous slide, this actually meant

d d d
V(o2 = Lo i)+ LI )+ L2 ke

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Oy
j 7 XX

Cartesian - polar
coordinates 1 coordinates W
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What about the Basis?

On the previous slide, this actually meant

d d d
V(o2 = Lo i)+ LI )+ L2 ke

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Ty,
€y € ?’

Cartesian polar
. e, .
coordinates coordinates W
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

2,
df = fdx+ 8§ dy + ajzf

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms d f.dx.dy.dz takes direction vector as input, gives scalar output

In the expression of the gradient df above, all 1-forms on the right-hand side get
the same vector as input

df is simply a linear combination of the coordinate differentials dx,dy,dz
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept
(also “total differential” or “total derivative”)

2, d d
df:a—idx+a—§dy+a—§dz

The directional derivative and the gradient vector

Dyf = df(u)
df(u)=Vf-u

The gradient vector is then defined, such that:
Vf-u:=df(u)
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Gradient Vectors and Differential 1-Forms

20}

15-

10-

O —\ L L L 1
20 -15 -10 5 0

from Wikipedia (for u a unit vector),
the function hereis  f(x,y) = X2 +y2

V(x.y) = 2xi+2yj
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Gradient Vectors and Differential 1-Forms

20}

15-

10-

O —\ L L L 1
20 -15 -10 5 0

from Wikipedia (for u a unit vector),
the function hereis  f(x,y) = x> +y?

Vf(x,y) =2xer+2ye,
df(x,y) =2xdx+2ydy 18



Gradient Vectors and Differential 1-Forms

20}
15}

10-

how about in polar coordinates?

©
7 X

from Wikipedia (for u a unit vector),
the function hereis  f(r,0) = r? i

Vf(r,0)=2re .+ Or—2 eg = 2re,

df(r,0) =2rdr+0d0 =2rdr 19
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Gradient Vectors and Differential 1-Forms

20}
15}

10-

how about in polar coordinates?

©
7 X

from Wikipedia (for u a unit vector),
the function here is  f(r,0) = r?

VI(r0)= 2rer+eg =2re,
df(r,0) =2rdr+0d0 = 2rdr 20




Gradient Vectors and Differential 1-Forms

different 1-forms
‘ ‘ ' : evaluated in some direction

MR

1-form (field) df

10-

(g

oF
L L L L 1
-20 -15 -10 -5 0

from Wikipedia (for u a unit vector),

the function hereis  f(r.0) =r
Vf(r,0)= 2rer+0r—2 eg =2re,

df(r,0) =2rdr+0d0 =2rdr 21
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Inner Products and Metric Tensor (Field)

Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)

(v,w) :=g(v,w) = |[v]|[|w[[cos 6
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Inner Products and Metric Tensor (Field)

Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)

- ~1 (@D
(v W) 1= g(v.w) = ||v] || cos oo [on ]
7821 822
i i 1
2 _ 2 _ 121|811 812 |V
V2 = (v, ME=[ s g
= g(v,v) ' '
= gijV'v’ Cartesian [t 0
—vigy coordinates: &9 0 1
g -1 0- Vl T
P=[ 2] [L sz v
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Inner Products and Metric Tensor (Field)

Components of metric referred to coordinates

gij = (e;,€;)

A second-order tensor field is bi-linear, i.e.,
linear in each (vector/covector) argument separately

From bi-linearity we immediately get:

(V,W) = g(viei,wjej)
= viwj(ei,ej>

o
= gijv'w
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Tensor Calculus

Highly recommended:

Very nice book, Pavel Grinfeld

I Introduction to
Tensor Analysis
and the Calculus
of Moving
Surfaces

complete lecture on Youtube!

@ Springer
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Thank you.




