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CS 247 — Scientific Visualization
Lecture 7: Scalar Fields, Pt. 3
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Reading Assignment #4 (until Feb 21)

Read (required):

» Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive
(Terminology, Types of Light Sources, Gradient-Based Illlumination,
Local lllumination Models)

» Paper:
Marching Cubes: A high resolution 3D surface construction algorithm,
Bill Lorensen and Harvey Cline, ACM SIGGRAPH 1987
[> 17,700 citations and counting...]

https://dl.acm.org/doi/10.1145/37402.37422

Read (optional):

» Paper:
Flying Edges, William Schroeder et al., IEEE LDAV 2015

https://ieeexplore.ieee.org/document/7348069



Quiz #1: Feb 21

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
* Reading assignments (except optional ones)
* Programming assignments (algorithms, methods)

» Solve short practical examples
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Programming Assignment 3
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Scalar Fields




What are contours?
Set of points where the scalar field f has a given value ¢
S(c):={xeR": f(x) =c}

Examples in 2D:
* height contours on maps

* isobars on weather maps

Contouring algorithm:
« find intersection with grid edges

« connect points in each cell
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Example

contour levels

— 4

- - - 47?
6-¢

— 8-¢

- - - 8+¢€

2 types of degeneracies:
» isolated points (c=6)
 flat regions (c=8)
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Contours in a quadrangle cell

Basic contouring algorithms:

« cell-by-cell algorithms: simple structure, but generate
disconnected segments, require post-processing

« contour propagation methods: more complicated, but
generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):
* process nodes in ccw order, denoted here as xg,X1,X2,X3
* compute at each node X; the reduced field
f(xl-) — f(xi) — (c — g) (which is forced to be nonzero)
« take its sign as the it" bit of a 4-bit integer

« use this as an index for lookup table containing the connectivity
information:
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Contours in a quadrangle cell

LINIAH fws
o f(x;)>0

KI Ij - B Alternating signs exist
iIn cases 6 and 9.
Choose the solid or
dashed line?
H . [j KI Both are possible for
11

topological
consistency.
This allows to have a
fixed table of 16
12 13 14 15 cases.
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Contours in a quadrangle cell
® f(xj)<c
o) f(x,-) > c
KI Ij - B Alternating signs exist
iIn cases 6 and 9.
Choose the solid or
dashed line?
Both are possible for
11

topological
consistency.
This allows to have a
fixed table of 16
12 13 14 15 cases.
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Contours in a quadrangle cell
® f(x)<c
O f(xi) > C
KI Ij - B Alternating signs exist
iIn cases 6 and 9.
Choose the solid or
dashed line?
Both are possible for
11

topological
consistency.
This allows to have a
fixed table of 16
12 13 14 15 cases.
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Orientability (1-manifold embedded in 2D)

Orientability of 1-manifold: not orientane =

Possible to assign consistent left/right orientation

Moebius strip
|so-contours (only one side!)

 Consistent side for scalar values...

« greater than iso-value (e.g, left side) Ij
* less than iso-value (e.g., right side) 5 ® f(x)
» Use consistent ordering of vertices 0O f(x) >
l

(e.g., larger vertex index is “tip” of arrow;
if (0,1) points “up”, “left” is left, ...)
1,
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Orientability (2-manifold embedded in 3D)

not orientable

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

Moebius strip

Triangle meshes (only one side!)
 Edges
» Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)
(e.g., (3,1,2) on one side of edge, (1,3,4) on the other side) 2
« Triangles
» Consistent front side vs. back side 3
* Normal vector; or ordering of vertices (CCW/CW) 1
 See also: “right-hand rule” GL_CCW
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Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level ¢ is found as a node value, set the level to c-e where ¢
Is a symbolic infinitesimal.

Then:

« contours intersect edges at some (possibly infinitesimal) distance
from end points

 flat regions can be visualized by pair of contours at c-e and c+¢
« contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

(except where the
boundary is hit)
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Ambiguities of contours

What is the correct contour of c=47
Two possibilities, both are orientable:

« connect high values

« connect low values -----—-—--_.

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear
interpolation?
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Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

critical point
(saddle point)

here, the critical
value is 2/3=0.666...

“‘Asymptotic decider”: resolve ambiguous configurations (6 and 9) by
comparing specific iso-value with critical value (scalar value at critical point)



Linear Interpolation / Convex Combinations

'i‘ wikipedia
1
1

i o T T I T T 1
I 1 2 3 4 5
I
.,_Z_;‘ W m-':
<€ > piecewise linear

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

Linear interpolation in 1D:

fla)=(1—a)vi+an

flay, 00) =av +av fla)=vi+oa(v—v)
o +on =1 o= 0>

Line segment: Q1,060 >0  (— convex combination)
Compare to line parameterization v(t) =vi+t(va—vy)

with parameter t:

Markus Hadwiger 20



Linear Interpolation / Convex Combinations

Linear combination (#n-dim. space):
n
o1V +00hvy +...+ 0V, = Z oLV
i=1
Affine combination: Restrict to (n — 1)-dim. subspace:

n
OCl—I—OCz—l—...—I—OCn:ZOCi:1 Vi
=1

1= Qo

Convex combination: o; >0

(restrict to simplex in subspace)
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Linear Interpolation / Convex Combinations

The weights O; are the n normalized barycentric coordinates

— linear attribute interpolation in simplex attribute interpolation

n
vy +00Vvy+...+ 0V, = Z o, Vi
i=1

n
061—|—062—|—...—|—06n:ZOCi:1
i=1

o; >0

Py

spatial position wikipedia

interpolation
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Linear Interpolation / Convex Combinations

n
o1V +00hvy +...+ 0V, = Z oLV

n
OCl—I—OCz—I—...—I—OCn:ZOCi:l
=1

Can re-parameterize to get (n — 1) affine coordinates: Vi
1v1 +0hvy + 03vy = . 1 %0)
O (v2—vi)+ 0 (vz—vi)+v Q
o = o
0 = 03
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Contours in triangle/tetrahedral cells

Linear interpolation of cells implies
piece-wise linear contours.

Contours are unambiguous, making
"marching triangles" even simpler than
"marching squares".

Question: Why not split quadrangles into two triangles (and
hexahedra into five or six tetrahedra) and use marching triangles

(tetrahedra)?

Answer: This can introduce periodic artifacts!
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Contours in triangle/tetrahedral cells

lllustrative example: Find contour at level ¢=40.0 !
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From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

3D - Marching Cubes Algorithm:

Locate the surface corresponding to a user-specified iso value

1.
2. Create triangles

3. Calculate normals to the surface at each vertex
4.

Draw shaded triangles
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Marching Cubes

- o il I
=]
Pammy b — 4 » Foreach cell, we have 8 vertices with 2
, | possible states each (inside or outside).
N _" 1 [~ * This gives us 2° possible patterns = 256
N Y.l cases.
(I b A ° Enumerate cases to create a LUT
i 1S 4—7Q + Use symmetries to reduce problem
7 from 256 to 15 cases.

¢ / Explanations
48 - Data Visualization book, 5.3.2
= = « Marching Cubes: A high resolution 3D

/= | ‘ surface construction algorithm,
[ os Lorensen & Cline, ACM SIGGRAPH 1987
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The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

« contours on planar slices, followed by

« "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
* Pieces of the isosurfaces are generated on a cell-by-cell basis.

* Similar to marching squares, a 8-bit number is computed from
the 8 signs of f(x;) on the corners of a hexahedral cell.

« The isosurface piece is looked up in a table with 256 entries.
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The marching cubes algorithm
How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
 rotational symmetries of the cube

« reflective symmetries of the cube

+ sign changes of f(x;)

They published a reduced set of 14") cases shown on the next
slides where

+ white circles indicate positive signs of f(x;)
« the positive side of the isosurface is drawn in red, the negative
side in blue.

*) plus an unnecessary "case 14" which is a symmetric image of case 11.
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case 4

Ronald Peikert

The marching cubes algorithm

case 1

O
case 5 case 6
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The marching cubes algorithm

o,
case 10 case 11

o;
case 12 case 13
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The marching cubes algorithm

Do the pieces fit together?

« The correct isosurfaces of the trilinear
interpolant would fit (trilinear reduces to
bilinear on the cell interfaces)

* but the marching cubes polygons don't
necessarily fit.

Example
« case 10, on top of
» case 3 (rotated, signs changed)

have matching signs at nodes but polygons
don't fit.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces
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The marching cubes algorithm

L4 ’

case 3¢ case 6¢ case /¢

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-21



Thank you.




