

CS 247 – Scientific Visualization Lecture 5: Data Representation, Pt. 3; Scalar Fields, Pt. 1

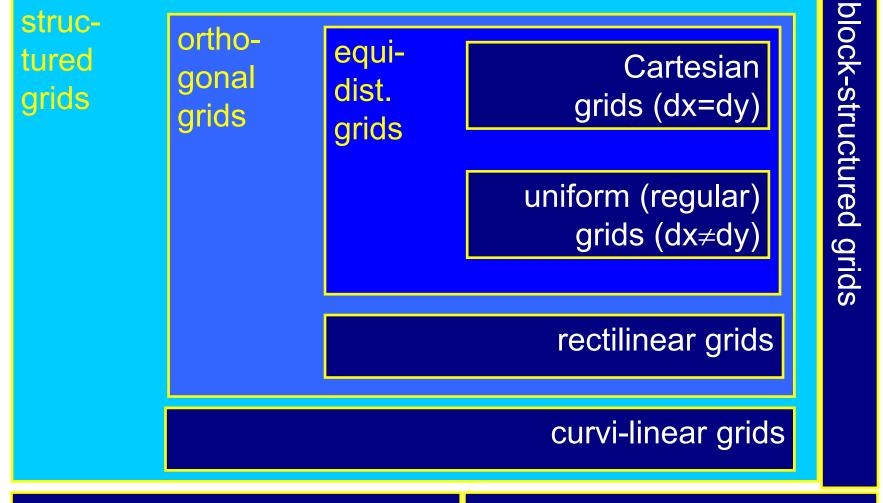
Markus Hadwiger, KAUST

Reading Assignment #3 (until Feb 14)

Read (required):

- Data Visualization book, finish Chapter 3 (read starting with 3.6)
- Data Visualization book, Chapter 5 until 5.3 (inclusive)

Grid Types - Overview

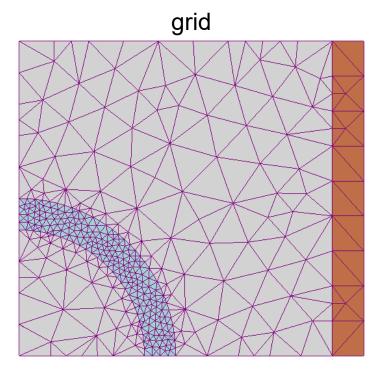


hybrid grids

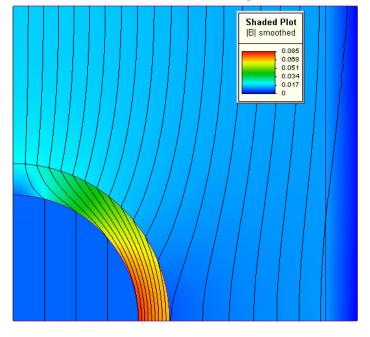
unstructured grids

3

Grids vs. Data on Grids



scalar field on grid



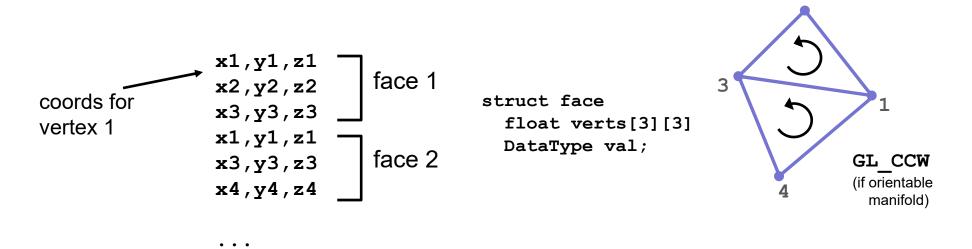
wikipedia

Data Structures

Unstructured 2D Grid: Direct Storage

2

Store list of vertices; vertices shared by triangles are replicated Render, e.g., with OpenGL immediate mode, ...



Redundant, large storage size, cannot modify shared vertices easily Store data values per face, or separately

Unstructured 2D Grid: Indirect Storage

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search for shared edges (local information)

Unstructured 2D Grids: Connectivity/Incidence

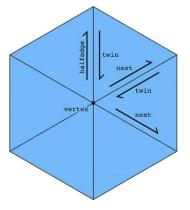
Half-edge (doubly-connected edge list) data structure

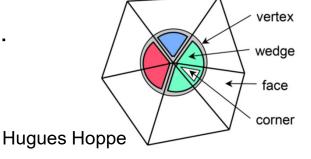
- Pointer to half-edge (twin) in neighboring face (mesh needs to be orientable 2-manifold)
- Pointer to next half-edge in same face
- Half-edge associated with one vertex, edge, face

Modifications: attributes, mesh simplification, ...

- Vertices, corners, wedges, faces
- Express attribute continuity vs. discontinuity

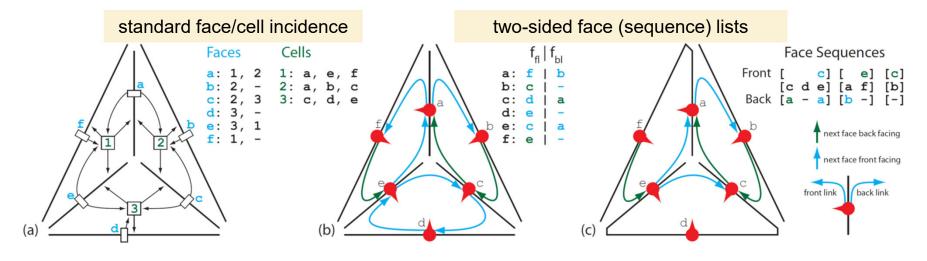
Visualization often needs volumetric version of these ideas (tet meshes, polyhedral meshes, ...)





3D Grids: Two-Sided Face Sequence Lists

General polyhedral grids (arbitrary polyhedral cells); example: TSFSL (Muigg et al., 2011)



Cooling Jacket

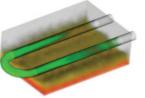
Cells/Vertices/Faces:1,538KTetrahedra:17,044kCelltypes:tets/pyrBricks/Cell Overhead:4/1.7%TSFSL Creation Time:4.0s

1,362K / 7,432K / 8,869K 89,417K (~7.5 byte/tet) general (non-convex) polyhedra 10/8.6% 9.0s

Mixer

Exhaust Manifold

82K / 324K / 441K 4,095K (~7.0 byte/tet) general (non-convex) polyhedra 1/0% 1.7s Heater

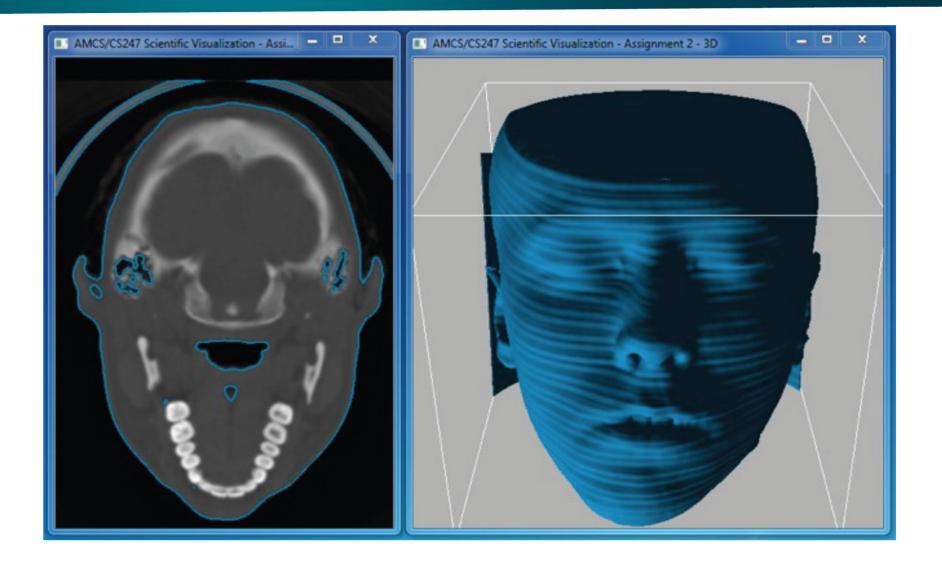


17K / 68K / 91K 851K (~7.0 byte/tet) general (non-conv.) polyh. 1/0% 1.0s

Markus Hadwiger, KAUST

Scalar Fields

Programming Assignment 2 + 3



Scalar Fields are Functions

• 1D scalar field: $\Omega \subseteq R \to R$

•2D scalar field:
$$\Omega \subseteq R^2 \to R$$

• 3D scalar field:
$$\Omega \subseteq R^3 \to R$$

 \rightarrow volume visualization!

more generally: $\Omega \subseteq$ n-manifold

Basic Visualization Strategies

Mapping to geometry

- Function plots
- Height fields
- Isocontours/isolines, isosurfaces
- Color mapping

Specific techniques for 3D data

- Indirect volume visualization
- Direct volume visualization
- Slicing

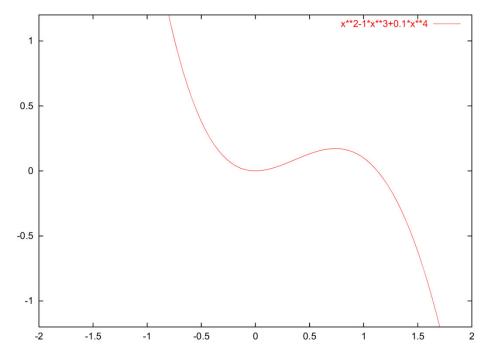
Visualization methods depend heavily on dimensionality of domain

Function Plots and Height Fields (1)

Function plot for a 1D scalar field

 $\{(x, f(x))|x \in \mathbb{R}\}$

- Points
- 1D manifold: line

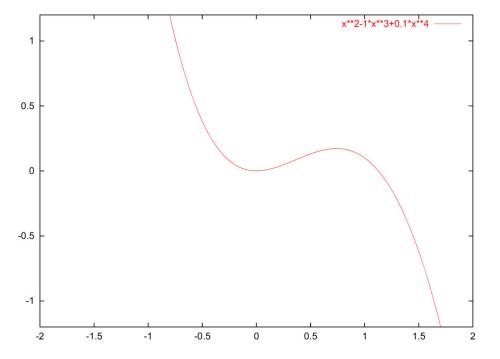


Function Plots and Height Fields (1)

Function plot for a 1D scalar field

$$\{(s, f(s)) | s \in \mathbb{R}\}$$

- Points
- 1D manifold: line

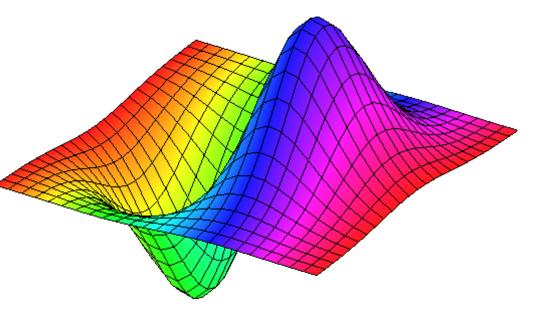


Function Plots and Height Fields (2)

Function plot for a 2D scalar field

$$\{(x, f(x)) | x \in \mathbb{R}^2\}$$

- Points
- 2D manifold: surface
- Surface representations
 - Wireframe
 - Hidden lines
 - Shaded surface

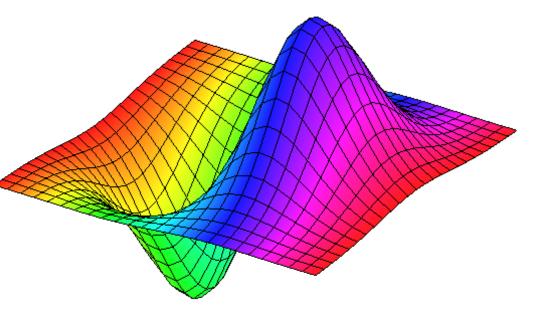


Function Plots and Height Fields (2)

Function plot for a 2D scalar field

$$\{(s,t,f(s,t)) | (s,t) \in \mathbb{R}^2\}$$

- Points
- 2D manifold: surface
- Surface representations
 - Wireframe
 - Hidden lines
 - Shaded surface

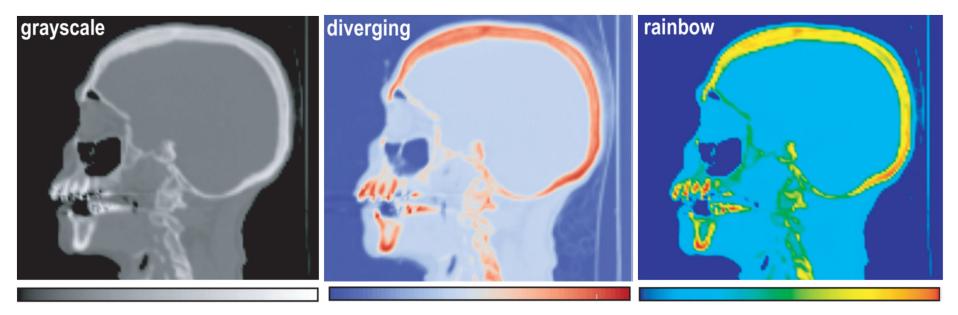


Color Mapping / Color Coding

Map scalar value to color

- Color table (e.g., array with RGB entries)
- Procedural computation; manual specification

With opacity (alpha value "A"): 1D transfer function (RGBA table, ...)



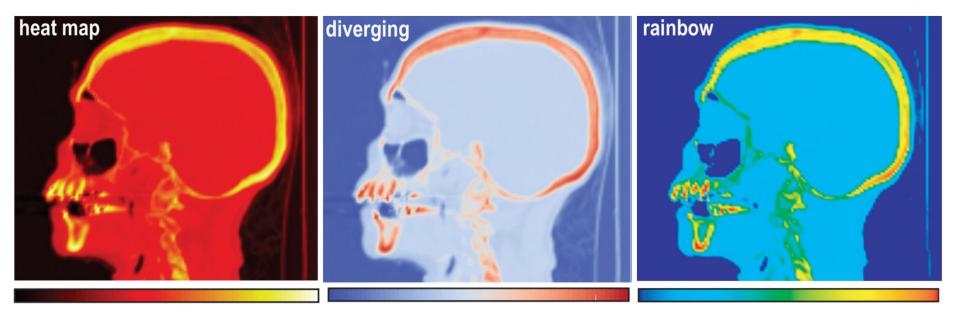
not recommended!

Color Mapping / Color Coding

Map scalar value to color

- Color table (e.g., array with RGB entries)
- Procedural computation; manual specification

With opacity (alpha value "A"): 1D transfer function (RGBA table, ...)



not recommended!

Contours

Set of points where the scalar field *s* has a given value *c*:

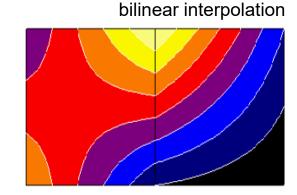
$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^n : f(x) = c\}$

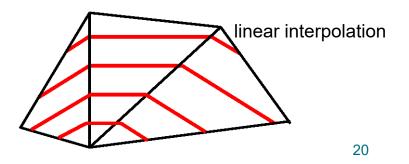
Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting





Contours

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^2 : f(x) = c\}$

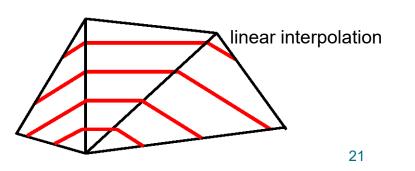
Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

bilinear interpolation



Contours

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^3 : f(x) = c\}$

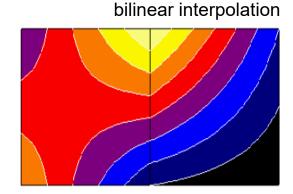
Common contouring algorithms

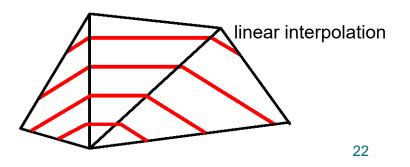
- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

Markus Hadwiger, KAUST





What are contours?

Set of points where the scalar field *s* has a given value *c*:

$$S(c) := \{x \in \mathbb{R}^n \colon f(x) = c\}$$

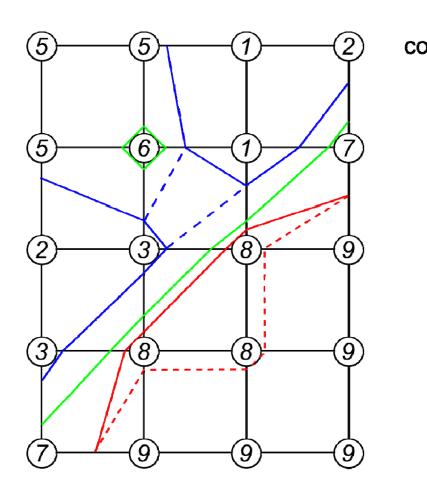
Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- connect points in each cell

Example



2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

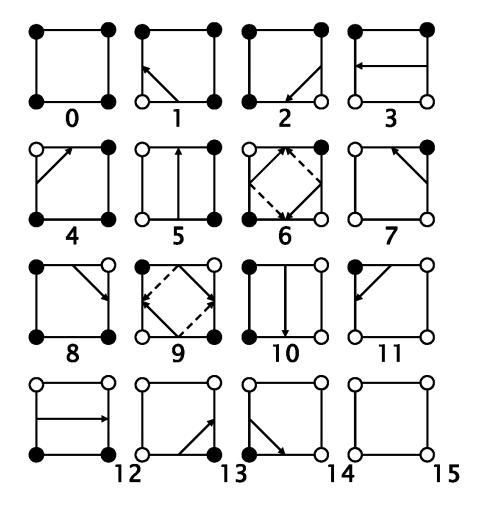
Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{x}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

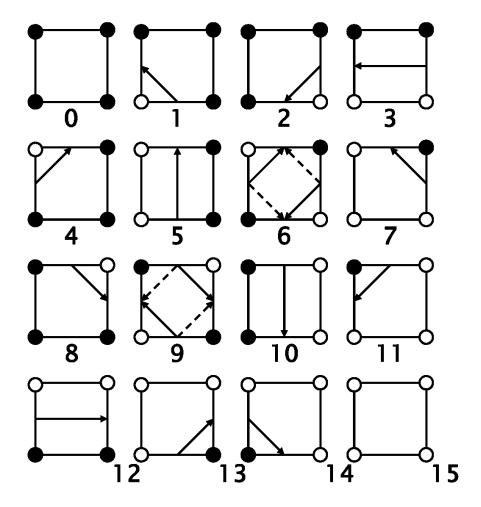
Contours in a quadrangle cell



• $\tilde{f}(x_i) < 0$ • $\tilde{f}(x_i) > 0$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

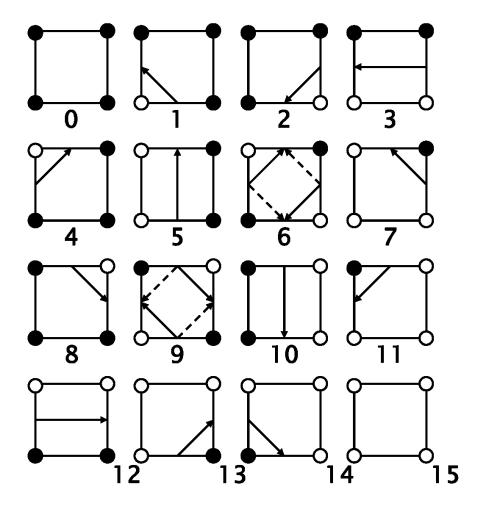
Contours in a quadrangle cell



• $f(x_i) < c$ • $f(x_i) \ge c$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

Contours in a quadrangle cell



• $f(x_i) \le c$ • $f(x_i) > c$

Alternating signs exist in cases 6 and 9. Choose the solid or dashed line? Both are possible for topological consistency. This allows to have a fixed table of 16 cases.

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama