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Reading Assignment #2 (until Feb 7)

Read (required):
» Data Visualization book, finish Chapter 2
» Data Visualization book, Chapter 3 until 3.5 (inclusive)

« Data Visualization book, Chapter 4 until 4.1 (inclusive)

» Continue familiarizing yourself with OpenGL if you do not know it !



Data Representation



Mathematical Functions

Associates every element of a set (e.g., X) with exactly one
element of another set (e.g., Y)

Maps from domain (X) to codomain (Y)
f: X—=Y
x> f(x)

Also important: range/image; preimage;
continuity, differentiability, dimensionality, ...

Graph of a function (mathematical definition):

G(f) =1 fx)xe X} CXxY
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Data Representation
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Domain Not Always Euclidean

Manifolds

e Scalar, vector, tensor
fields on manifolds

Markus Hadwiger, KAUST 7



Topological Manifolds

Every point of an n-manifold is homeomorphic
(topologically equivalent) to a region of R"

Think about being able to assign coordinates to a region:
coordinate chart; (collection of charts: atlas)
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Smooth Manifolds

Well-defined tangent space at every point

« Dimensionality of each tangent space is the same as that of manifold

Enables calculus on manifolds (and vector fields, tensor fields, ...)
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Sampled Functions

and Data Structures




Data Representation

« Discrete (sampled) representations
— The objects we want to visualize are often ‘continuous’
— But in most cases, the visualization data is given only at
discrete locations in space and/or time
— Discrete structures consist of samples, from which
grids/meshes consisting of cells are generated

 Primitives in different dimensions

dimension cell mesh
0D points
1D lines (edges) polyline(—gon)
2D triangles, quadrilaterals (rectangles) 2D mesh
3D tetrahedra, prisms, hexahedra 3D mesh
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Domain

« The (geometric) shape of the domain is determined
by the positions of sample points

 Domain is characterized by
— Dimensionality: 0D, 1D, 2D, 3D, 4D, ...

— Influence: How does a data point influence its
neighborhood?

— Structure: Are data points connected? How? (Topology)
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Domain

Influence of data points

— Values at sample points influence the data distribution in a
certain region around these samples

— To reconstruct the data at arbitrary points within the domain,
the distribution of all samples has to be calculated

Point influence
— Only influence on point itself

| ocal influence

— Only within a certain region
» Voronoi diagram
« Cell-wise interpolation (see later in course)

Global influence
— Each sample might influence any other point within the

domain
« Material properties for whole object
« Scattered data interpolation. . .. . .



Domain

« Voronoi diagram

— Construct a region around each sample point that
covers all points that are closer to that sample
than to every other sample

— Each point within a certain region gets assigned
the value of the sample point

— Nearest-neighbor interpolation
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Domain S

« Scattered data interpolation interpolate here

— At each point the weighted average of all sample
points in the domain is computed

— Weighting functions determine the support of each
sample point

 Radial basis functions simulate decreasing influence
with increasing distance from samples

— Schemes might be non-interpolating and
expensive in terms of numerical operations
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Data Structures

* Requirements:
— Efficiency of accessing data
— Space efficiency
— Lossless vs. lossy

— Portabillity
« Binary — less portable, more space/time efficient
« Text — human readable, portable, less space/time efficient

« Definition
— If points are arbitrarily distributed and no connectivity exists
between them, the data is called scattered
— Otherwise, the data is composed of cells bounded by grid
lines
— Topology specifies the structure (connectivity) of the data
— Geometry specifies the position of the data
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Data Structures

Some definitions concerning topology and geometry
— In topology, qualitative questions about geometrical

structures are the main concern
« Does it have any holes in it?
* |s it all connected together?
« Can it be separated into parts?

Underground map does not tell you how far one
station is from the other, but rather how the lines are
connected (topological map)
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Grids — General Questions

Important questions:
« Which data organization is optimal?
* Where do the data come from?
* |s there a neighborhood relationship?
* How is the neighborhood info stored?
* How is navigation within the data possible?
» What calculations with the data are possible ?

 Are the data structured (regular/irregular topology)?

18



Data Structures

» Grid types

— Grids differ substantially in the cells (basic
building blocks) they are constructed from and in
the way the topological information is given
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Data Structures

« Topology

— Properties of geometric shapes that remain
unchanged even when under distortion

Same geometry (vertex positions), different topology (connectivity)

© Weiskopf/Machiraju/Moller



Data Structures

« Topologically equivalent

— Things that can be transformed into each other by
stretching and squeezing, without tearing or
sticking together bits which were previously
separated

topologically equivalent



Data Structures

« Structured and unstructured grids can be

distinguished by the way the elements or cells meet

« Structured grids

— Have a regular topology and regular / irregular geometry

« Unstructured grids
— Have irregular topology

and geometry

structured
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Data Structures

An n-simplex
— The convex hull of n + 1 affinely independent points
— Livesin R™, withn<m
— 0: points, 1: lines, 2: triangles, 3: tetrahedra

Partitions via simplices are called triangulations

Simplical complex C is a collection of simplices with:

— Every face of an element of Cis alsoin C

— The intersection of two elements of C is empty or it is a face
of both elements

Simplical complex is a space with a triangulation

av

Simplical complexes

Not a simplical complex



Data Structures

« Simplicial complexes can be of mixed dimensions
up to<n
(except if “pure” complexes)

 Example:

Simplicial
3-complex °

[Wikipedia.org]



Data Structures

« 2-manifold meshes: neighborhood is
2-dimensional topological disc (or half disc for
manifolds with boundary)



Data Structures

« Non-manifold meshes

§>
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Grid Types - Overview

Cartesian
grids (dx=dy)

uniform (regular)
grids (dx=dy)

sSpub painjoni}s-3o0|g

rectilinear grids

unstructured grids hybrid grids .




Naming / Definition Caveats

Beware of different naming conventions / different definitions

Example:

« On the previous slide, we used the term “orthogonal grid” in a simple, “global” way
for the entire grid, i.e., different types of rectilinear grids, ...

« In differential geometry, an orthogonal coordinate system is defined pointwise, i.e.,
a curvilinear grid with orthogonal basis vectors at each point is orthogonal

In differential geometry, both of these are orthogonal (in our context, the right one is not):

o 4
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Structured Grids




Data Structures

« Characteristics of structured grids

Easier to compute with
Often composed of sets of connected parallelograms
(hexahedra), with cells being equal or distorted with respect
to (non-linear) transformations

May require more elements or badly shaped elements in
order to precisely cover the underlying domain

Topology is represented implicitly by an n-vector of
dimensions

Geometry is represented
explicitly by an array of points
Every interior point has the
same number of neighbors

P —
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Data Structures

« Characteristics of structured grids

Structured grids can be stored in a 2D / 3D array
Arbitrary samples can be directly accessed by indexing a
particular entry in the array

Topological information is implicitly coded
» Direct access to adjacent elements

Cartesian, uniform, and rectilinear grids are necessarily
convex

Their visibility ordering of elements with respect to any
viewing direction is given implicitly

Their rigid layout prohibits the geometric structure to adapt
to local features

Curvilinear grids reveal a much more flexible alternative to
model arbitrarily shaped objects

However, this flexibility in the design of the geometric shape
makes the sorting of grid elements a more complex
procedure



Data Structures

 Typical implementation of structured grids

DataType *data = new DataType [Nx * Ny * Nz |;
val=data[i+)*Nx+ Kk * (Nx *Ny)];

... code for geometry ...
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Data Structures

« Cartesian or equidistant grids
— Structured grid
— Cells and points are numbered sequentially with respect to
increasing X, then Y, then Z, or vice versa
— Number of points = Nx*Ny+Nz
— Number of cells = (Nx-1)*(Ny-1)¢(Nz-1)
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Data Structures

» Cartesian grids

— Vertex positions are given implicitly from [i,j,k]:
* P[i,J,k].x = origin_x + i * dx
* P[i,J,kl.y = origin_y + j « dy
* P[i,J,kl.z=origin_z + k *dz

— Global vertex index I[i,j,K] = keNy*Nx + jeNx + i
« k=1/(Ny*Nx)
* = (1 % (NysNx)) / Nx
* i=(1% (Ny*Nx)) % Nx

— Global index allows for linear storage scheme
« Wrong access pattern might destroy cache coherence
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Data Structures

« Uniform grids

Similar to Cartesian grids

Consist of equal cells but with different resolution in at least
one dimension ( dx # dy (# dz))

Spacing between grid points is constant in each dimension
— same indexing scheme as for Cartesian grids

Most likely to occur in applications where the data is
generated by a 3D imaging device providing different

sampling rates in each dimension _ dx
Typical example: medical volume data " ) ™
consisting of slice images {

« Slice images with square pixels (dx = dy)

« Larger slice distance (dz > dx = dy)

© Weiskopf/Machiraju/Moller
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Data Structures

« Rectilinear grids

— Topology is still regular but irregular spacing
between grid points

» Non-linear scaling of positions along either axis

« Spacing, x_coord[L], y_coord[M], z_coord[N], must be
stored explicitly

— Topology is still implicit
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Data Structures

« Curvilinear grids
— Topology is still regular but irregular spacing

between grid points
 Positions are non-linearly transformed

— Topology is still implicit, but vertex positions are

explicitly stored
« X_coord[L,M,N]
« y coord[L,M,N]
« z coord[L,M,N]
— Geometric structure
might result in

concave grids




Data Structures

« Curvilinear grids




Unstructured Grids




Data Structures

« Unstructured grids
— Can be adapted to local features
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Data Structures

« Unstructured grids
— Can be adapted to local features
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Data Structures

 If no implicit topological (connectivity) information is

given, the grids are called unstructured grids
— Unstructured grids are often computed using quadtrees
(recursive domain partitioning for data clustering), or by
triangulation of point sets
— The task is often to create a grid from scattered points

« Characteristics of unstructured grids

— Grid point geometry and connectivity must be stored

— Dedicated data structures needed to allow for efficient
traversal and thus data retrieval

— Often composed of triangles or
tetrahedra

— Typically, fewer elements are needed
to cover the domain

P —

N
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Data Structures

« Unstructured grids

— Composed of arbitrarily positioned and connected
elements

— Can be composed of one unique element type
or they can be hybrid (tetrahedra, hexas, prisms)

— Triangle meshes in 2D and tetrahedral grids in 3D
are most common

— Can adapt to local features
(small vs. large cells)

— Can be refined adaptively

— Simple linear interpolation
In simplices
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Data discretizations

Types of data sources have typical types of discretizations:
+ Measurement data:

— typically scattered (no grid)
* Numerical simulation data:

— structured, block-structured, unstructured grids

— adaptively refined meshes

— multi-zone grids with relative motion J

— etc.
+ Imaging methods:
— uniform grids
« Mathematical functions:
— uniform/adaptive sampling on demand

Ronald Peikert




Unstructured grids

2D unstructured grids:

» cells are triangles and/or quadrangles

« domain can be a surface embedded in 3-space
(distinguish n-dimensional from n-space)

"0‘19 cell
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Unstructured grids

3D unstructured grids:

+ cells are tetrahedra or hexahedra

* mixed grids ("zoo meshes”) require additional types:
wedge (3-sided prism), and pyramid (4-sided)

445
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Common Unstructured Grid Types (1)

« Simplest: purely tetrahedral

N
o
i’
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Tet grid example
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Common Unstructured Grid Types (2)

Pre-defined cell types
(tetrahedron, triangular prism, quad pyramid,
hexahedron, octahedron)

 Only triangle / quad faces

 Planar / non-planar faces

49
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Example: General Polyhedral Cells

Exhaust manifold

* 81,949 general, non-convex cells
(equivalent to 4,094,724 tetrahedral cells!)

» 324,013 vertices

* Color coding: temperature distribution
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Hybrid Grids
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Data Structures

Hybrid grid example
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Grid Types - Overview

Cartesian
grids (dx=dy)

uniform (regular)
grids (dx=dy)
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rectilinear grids

unstructured grids hybrid grids y




Thank you.




