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Lecture 27: Vector / Flow Visualization, Pt. 9
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Reading Assignment #15++

Read (optional):
• Tobias Günther, Irene Baeza Rojo:

Introduction to Vector Field Topology

https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

• Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:

State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties

https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.14037

• B. Jobard, G. Erlebacher, M. Y. Hussaini:

Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization

http://dx.doi.org/10.1109/TVCG.2002.1021575

• Anna Vilanova, S. Zhang, Gordon Kindlmann, David Laidlaw:

An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications

http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf



Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



(Non-Linear) Dynamical Systems

Start with system of linear ODEs (with constant coefficients)

• Non-linear systems can be linearized around critical points

• Use linearization for characterization

solution:

characterize behavior
through eigenvalues of A



Critical Points (Steady Flow!)
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Exponentials of anti-symmetric matrices are rotation matrices
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Complex eigenvalues lead to rotation
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Classification of Critical Points

(Isolated) critical point (equilibrium point)

• Velocity vanishes (all components zero)

Characterize using velocity gradient v at critical point

• Look at eigenvalues (and eigenvectors) of v  

det( v(x ) ) 0

the first three phase portraits are special cases, see later slides!

c c c
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A Few Details (1)

Repelling/attracting nodes

• Do not necessarily imply that streamlines are straight lines
(do not confuse with the linear system of ODEs!)

• They are only straight lines when both eigenvalues are real and have 
the same sign, and are also equal (as in the phase portraits before)

• If they are not equal:
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A Few Details (2)

What about skew axes?

• Both of the systems below have eigenvalues 3 and 6

• Jordan normal form (Jordan canonical form) gives details
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Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing

• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
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(defective matrix)



Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing

• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
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(defective matrix)

same eigenvalues, 
trace, determinant!



Another Example
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has form

Eigenvalues:

λ1 = -1

λ2 = 2



Jordan Form Characterization (1)

Phase portraits corresponding to Jordan matrix

14



Jordan Form Characterization (2)

Phase portraits corresponding to Jordan matrix
(matrix is defective: eigenspaces collapse,
geometric multiplicity less than algebraic multiplicity)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (3)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (4)
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Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



Vector Field Topology: Topological Skeleton

Connect critical points by separatrices

Sources (red), sinks (blue), saddles (yellow)
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Vector Field Topology: Topological Skeleton

Connect critical points by separatrices
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Index of Critical Points / Vector Fields

Poincaré index (in scalar field topology we had the Morse index)

• Can compute index (winding number) for each critical point

• Index of a region is the sum of the critical point indexes inside

• Sum of all indexes over a manifold is its Euler characteristic

Do a loop (Jordan curve) around each critical point: the index is its
(Brouwer) degree: integer how often the vector field along the loop turns 
around (determined by angle 1-form integrated over oriented 1-manifold)



Higher-Order Critical Points

Higher than first-order

• Sectors can by elliptic, parabolic, hyperbolic

• For index sum over number of elliptic and hyperbolic sectors
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(see monkey saddle)(dipole)



Example: Differential Topology

Topological information from vector fields on manifold

• Independent of actual vector field! Poincaré-Hopf theorem

• Useful constraints: vector field editing, simplification, sphere always has critical point, …

Topological invariant: Euler characteristic          of manifold
(for 2-manifold mesh:                               )
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genus g=0
Euler characteristic 2

genus g=1
Euler characteristic 0

genus g=2
Euler characteristic -2

(orientable)



Example: Vector Field Editing

Guoning Chen et al., Vector Field Editing and Periodic Orbit 
Extraction Using Morse Decomposition, IEEE TVCG, 2007
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Recommended Books



Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


