
CS 247 – Scientific Visualization
Lecture 26: Vector / Flow Visualization, Pt. 8
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Reading Assignment #15++

Read (optional):
• Tobias Günther, Irene Baeza Rojo:

Introduction to Vector Field Topology

https://cgl.ethz.ch/Downloads/Publications/Papers/2020/Gun20b/Gun20b.pdf

• Roxana Bujack, Lin Yan, Ingrid Hotz, Christoph Garth, Bei Wang:

State of the Art in Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties

https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.14037

• B. Jobard, G. Erlebacher, M. Y. Hussaini:

Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization

http://dx.doi.org/10.1109/TVCG.2002.1021575

• Anna Vilanova, S. Zhang, Gordon Kindlmann, David Laidlaw:

An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications

http://vis.cs.brown.edu/docs/pdf/Vilanova-2005-IVD.pdf
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Quiz #4: May 5

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assignments (except optional ones)

• Programming assignments (algorithms, methods)

• Solve short practical examples



Lagrangian vs. Eulerian

Eulerian

• Flow properties given at fixed spatial positions (grid points)

• Partial time derivative

Lagrangian

• Flow properties given for each particle (particles are moving)

• Material time derivative



Lagrangian vs. Eulerian 

• Lagrangian: move along with the particle

• Eulerian: consider fixed point in space, look at particles moving through

• Example for pixels: rotate image (a),
Lagrangian: move pixels forward (b),
Eulerian: fetch pixels from backward direction (c)
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Material Derivative (1)

The material time derivative (convective derivative) gives the rate 
of change when following a particle in the flow
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:
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Material Derivative (2)

Actually, nothing else than application of the multi-variable chain rule:

We are given                      with four independent variables;

But now we want to go along a parameterized path with parameter t,
so x, y, z become dependent variables:

Along this path, our goal is now to compute the derivative of the function

with t as only independent variable:
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Advection

Advection equation; velocity field u( x, y, z, t ),
no change following particle, just advection:
set material derivative = 0:

In the Navier-Stokes equations: “self-advection” of velocity

• Advect scalar components of velocity field individually
(actually two equations in 2D, three equations in 3D)

this is equivalent to 
saying that the 
acceleration is zero!



Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field → tensor field)

• Gradient of vector field: how does the vector field change?

• In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

v

• Can be decomposed into symmetric part + anti-symmetric part

v = D + S velocity gradient tensor

sym.: D = ½ ( v + (v)T ) deform.:    rate-of-strain tensor

skew-sym.: S = ½ ( v – (v)T ) rotation: vorticity/spin tensor

these are
partial derivatives!



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor

• Antisymmetric part of velocity gradient tensor

• Corresponds to vorticity/curl/angular velocity (beware of factor ½)

S = ½ ( v – (v)T )

S = ½

S acts on vector like cross product with     :   S    = ½

these are
partial
derivatives!



Angular Velocity of Rigid Body Rotation

Rate of rotation

• Scalar ω: angular displacement per unit time (rad s-1)
– Angle ϴ at time t is ϴ(t) = ωt; ω = 2πf where f is the frequency (f = 1/T; s-1)

• Vector ω: axis of rotation; magnitude is angular speed (if ω is curl: speed x2)
– Beware of different conventions that differ by a factor of ½ !

Cross product of ½ω with vector to center of
rotation (r) gives linear velocity vector v (tangent)



Velocity Gradient Tensor and Components (1)

Velocity gradient tensor

(here: in Cartesian coordinates)

these are the same
partial derivatives
as before!



Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)



Velocity Gradient Tensor and Components (3)

Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)



Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



(Non-Linear) Dynamical Systems

Start with system of linear ODEs (with constant coefficients)

• Non-linear systems can be linearized around critical points

• Use linearization for characterization

solution:

characterize behavior
through eigenvalues of A



A Few Facts about Eigenvalues and –vectors

The matrix             has eigenvalues

with eigenvectors

If c = 0, this is a skew-symmetric matrix

Skew-symmetric matrices: “infinitesimal rotations” (infinitesimal generators of rot.)

For                and              : 2x2 rotation matrix with

Eigenvalues

• Symmetric matrix: all eigenvalues are real

• Skew-symmetric matrix: all eigenvalues are pure imaginary
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Euler’s Formula

Can be derived from the infinite power series for exp(), cos(), sin()
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Matrix Exponentials

Defined via same power series as usual exponential

Easy if X is diagonalizable

Exponentials of anti-symmetric matrices are rotation matrices
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Classification of Critical Points

(Isolated) critical point (equilibrium point)

• Velocity vanishes (all components zero)

Characterize using velocity gradient v at critical point

• Look at eigenvalues (and eigenvectors) of v  

det( v(x ) ) 0

the first three phase portraits are special cases, see later slides!

c c c

xc



A Few Details (1)

Repelling/attracting nodes

• Do not necessarily imply that streamlines are straight lines
(do not confuse with the linear system of ODEs!)

• They are only straight lines when both eigenvalues are real and have 
the same sign, and are also equal (as in the phase portraits before)

• If they are not equal:
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A Few Details (2)

What about skew axes?

• Both of the systems below have eigenvalues 3 and 6

• Jordan normal form (Jordan canonical form) gives details
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Jordan Normal Form (2x2 Matrix)

For every real 2x2 matrix     there is an invertible     such that

is one of the following Jordan matrices (all entries are real):

Each of these has its corresponding rule for constructing

• Example on prev. slide (the two eigenvectors are not orthogonal):

See also algebraic and geometric multiplicity of eigenvalues
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(defective matrix)



Another Example
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has form

Eigenvalues:

λ1 = -1

λ2 = 2



Jordan Form Characterization (1)

Phase portraits corresponding to Jordan matrix
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Jordan Form Characterization (2)

Phase portraits corresponding to Jordan matrix
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (3)
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Phase portraits corresponding to Jordan matrix

Jordan Form Characterization (4)
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Critical Points (Steady Flow!)
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stream lines (LIC) critical points (v = 0)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point



Recommended Books (1)



Recommended Books (2)



Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


