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Reading Assignment #14 (until May 3)

Read (required):

 J. van Wijk: Image-Based Flow Visualization,
ACM SIGGRAPH 2002

http://www.win.tue.nl/~vanwijk/ibfv/ibfv.pdf

Read (optional):

« T. Glnther, A. Horvath, W. Bresky, J. Daniels, S. A. Buehler:
Lagrangian Coherent Structures and Vortex Formation in High Spatiotemporal-Resolution Satellite
Winds of an Atmospheric Karman Vortex Street, 2021

https://www.essoar.org/doi/10.1002/esso0ar.10506682.2

« H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer:
The Helmholtz-Hodge Decomposition — A Survey, TVCG 19(8), 2013

https://doi.org/10.1109/TVCG.2012.316

« Work through online tutorials of multi-variable partial derivatives,
gradient, divergence, Laplacian, and curl:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives

https://www.youtube.com/watch?v=rB83DpBJQsE



Quiz #4: May 5

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
» Reading assignments (except optional ones)
* Programming assignments (algorithms, methods)

» Solve short practical examples



Fluid Simulation and Rendering

Compute advection of fluid

* (Incompressible or compressible) Navier-Stokes solvers
« Lattice Boltzmann Method (LBM)

Discretized domain

* Velocity, pressure

* Dye, smoke density,
vorticity, ...

Courtesy Mark Harris



Fluid Simulation: Navier Stokes (1)

Incompressible (divergence-free) Navier Stokes equations

0 ]
— = —(u - V)u — =Vp + Wu + F,
Ot 0
V.ou =0,
Components:

« Self-advection of velocity (i.e., advection of velocity according to velocity)
 Pressure gradient (force due to pressure differences)
« Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

 Application of (arbitrary) external forces, e.g., gravity, user input, etc.
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Fluid Simulation: Navier Stokes (1)

Incompressible (divergence-free) Navier Stokes equations

0 ]
8_u = —(u —Vp + W + F,
”
“\ this is the velocity

V- -u =0, gradient tensor!
Components:
« Self-advection of velocity (i.e., advection of velocity according to velocity)
 Pressure gradient (force due to pressure differences)
« Diffusion of velocity due to viscosity (for viscous fluids, i.e., not inviscid)

 Application of (arbitrary) external forces, e.g., gravity, user input, etc.
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Fluid Simulation: Navier Stokes (2)

Given a (Cartesian) coordinate system, the momentum
equation can be seen as a system of equations
(2 equations in 2D, 3 equations in 3D)

For 2D (Cartesian):
Ou _ —(u-V)u l(Vp)Jr w4+ £,
Ot 0
Ov 1
— = —(u-V)o = ~(Vp)+ W + f,.
Ot 0

these are PDES!



Vector Fields, Vector Calculus,
and Dynamical Systems



Some Vector Calculus (1)

Gradient (scalar field — vector field) v, — op Op
Ox Oy

« Conservative vector field: gradient of some scalar (potential) function

* Direction of steepest ascent; magnitude = rate

Divergence (vector field — scalar field) 9 9
7 v

« Volume density of outward flux: Viu=—+4 —
“exit rate: source? sink?” Ox Oy

» Incompressible/solenoidal/divergence-free vector field: divu =0
can express as curl (next slide) of some vector (potential) function

Laplacian (scalar field — scalar field) v 0* ap 0°p
« Divergence of gradient ? = Ox” 3)/2

» Measure for difference between point and its neighborhood



Some Vector Calculus (2)

Curl (vector field — vector field) Wy — Vg
« Circulation density at a point (vorticity) VXV = g — Wy
* If curl vanishes everywhere: irrotational/curl-free field Vo — Uy
. : : . . these are partial
» Every conservative (path-independent) field is irrotational derivatives!

(and vice versa if domain is simply connected)
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Some Vector Calculus (3)

Curl (vector field — vector field) Wy — Vg

Vx_uy

» Circulation density at a point (vorticity)

* If curl vanishes everywhere: irrotational/curl-free field
these are partial

» Every conservative (path-independent) field is irrotational derivatives!

(and vice versa if domain is simply connected)

Example:
curl not
always
“obviously
rotational”

- - - - -—

& ~» o =] s
- o o o o - - - - - - - o - -
- - - - - - - - - - - - - - -
- - o - - - - - - - - - - - -
- - < <« < <<

S
- - - o - -— -—




Some Vector Calculus (4)

Curl (vector field — vector field) Wy — Vg

Vx_uy

» Circulation density at a point (vorticity)

* If curl vanishes everywhere: irrotational/curl-free field

. : : . . these are partial
» Every conservative (path-independent) field is irrotational derivatives!

(and vice versa if domain is simply connected)

Example:

non-obvious S s s s s _ (~y,=,0)
i p / \ . V(:‘E? Y, ‘z) T

curl-free field x? + g2

-
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not defined at (x,y) = (0,0)

—

[this domain is not
simply connected! it is
the “punctured plane”,
i.e., the point (0,0) is
not in the domain] o o o~ =~ - - - - - < - velocity gradient Vv is
symmetric (see later)
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Some Vector Calculus (5)

Curl (vector field — vector field) Wy — Vg
Vx - uy

» Circulation density at a point (vorticity)

* If curl vanishes everywhere: irrotational/curl-free field

. : : . . these are partial
» Every conservative (path-independent) field is irrotational

_ : L derivatives!
(and vice versa if domain is simply connected)
Book: div Interactive tutorial on curl:
grade y http://mathinsight.org/curl idea

curl

al.;ﬁ Fundamental theorem of vector calculus:

Helmholtz decomposition: Any vector field can be

expressed as the sum of a solenoidal (divergence-free)
fourthicdition vector field and an irrotational (curl-free) vector field

h. m. schey (Helmholtz-Hodge: plus harmonic vector field)

that




Vector Fields and Dynamical Systems (1)

Velocity gradient tensor, (vector field — tensor field)
 Gradient of vector field: how does the vector field change?

* In Cartesian coordinates: spatial partial derivatives (Jacobian matrix)

. these are
Vv (x s Vs Z) _ Vx Vy Vz partial derivatives!
Wy Wy Wy

« Can be decomposed into symmetric part + anti-symmetric part

Vv=D+S velocity gradient tensor

sym.: D=%(Vv+(VVv)l) deform.: rate-of-strain tensor
skew-sym.: S=Y% (Vv —(Vv)!l) rotation: vorticity/spin tensor



Vector Fields and Dynamical Systems (2)

Vorticity/spin/angular velocity tensor
» Antisymmetric part of velocity gradient tensor

« Corresponds to vorticity/curl/angular velocity (beware of factor 15)

these are
S=Y%(Vv—(VV)T) partial
derivatives!
0 —o3 o Wy — V,
S=v| o 0 — O=|wm | =VXv=|u—wy
— O 0 0g Vy — Uy

S acts on vector like cross product with @: S« = Y5 @ x

v = S-dr =% [Vv—(Vv)!] - dr = fw xdr



Angular Velocity of Rigid Body Rotation

Rate of rotation
 Scalar o: angular displacement per unit time (rad s)
— Angle © at time t is O(t) = ot; ® = 2rf where fis the frequency (f = 1/T; s)

» Vector m: axis of rotation; magnitude is angular speed (if o is curl: speed x2)
— Beware of different conventions that differ by a factor of % !

Cross product of Y2m with vector to center of
rotation (r) gives linear velocity vector v (tangent)
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Velocity Gradient Tensor and Components (1)

Velocity gradient tensor

(here: in Cartesian coordinates)

- 0 J d . X7
a vx ? Vx a_z vx these are the same
Vv = ai Vy v Vy ai Vy partial derivatives
ax i ay : az . as before!
| Ox ayV 97

Vv =

% (Vv—l— (VV)T) —l—% (Vv— (VV)T)



Velocity Gradient Tensor and Components (2)

Rate-of-strain (rate-of-deformation) tensor

(symmetric part; here: in Cartesian coordinates)

A 9 dy 9 9 7
1], 28xV; ayvxg_axv %va—l— %x"
— _ | LY L2 9 Y 2SN T YRy
I = 5 aaxv + 5 v ; 2ayva 52V ;—ayv
9 < 9 O K 9y O .2
L ox Y +3zvx 8yv +8zv 28zv _

tr(D) = V-v



Vorticity tensor (spin tensor)

(skew-symmetric part; here: in Cartesian coordinates)

D[ —

DO | —

0
d.y_ d
aaxv %yv"
Y < _ 9

L oxY (9zvx
0 — W
fihs 0
—y Wy

0
8_ny_ dx
0
d.z_ 0
ay" dz
L{er ]
—Wy W
O -

y d.x_ d.z
% %va %xv
O Yy O <
97" ayv
Vv 0
= VXV




Critical Points (Steady Flow!)

Classify critical points according to the eigenvalues
of the velocity gradient tensor at the critical point

stream lines (LIC) critical points (v = 0)
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(Non-Linear) Dynamical Systems

Start with system of linear ODEs

* Non-linear systems can be linearized around critical points

» Use linearization for characterization

x = Ax
.
T dt

: . v =AX,
A is an n X n matrix —
Vv =A.
_ da:l -
dt X(O) = X0
; solution: x(t) = e”*xg
dz,
e characterize behavior
L dt -

through eigenvalues of A




Recommended Books (1

Fluid Simulation
for Computer Graphics

Robert Bridson
e TR

Continuum

Mechanics
A. 1. M. Spencer

VISCOUS
FLUID FLOW




Recommended Books (2)

div
erad .

Lawrence Perko

William A. Adkins
Mark G. Davidson

Differential

1[‘1 . Equa'ciqns;I and
namica *
e Sg;{stems Ordma ry.
and b Differential
all Equations

that

fourth edition

h. m. schey

@ Springer

@ Spriln ger




Thank you.




