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Reading Assignment #12 (until Apr 19)

Read (required):
« Data Visualization book
— Chapter 6.1
 Diffeomorphisms (smooth deformations)

https://en.wikipedia.org/wiki/Diffeomorphism

* Integral curves; stream/path/streak lines
https://en.wikipedia.org/wiki/Integral curve

https://en.wikipedia.org/wiki/Streamlines, streaklines, and pathlines

» Paper:
Bruno Jobard and Wilfrid Lefer
Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498



Quiz #3: Apr 19

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
» Reading assignments (except optional ones)
* Programming assignments (algorithms, methods)

» Solve short practical examples
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Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion

SOOI



Particle Trajectories

Courtesy Jens Krluger



Particle Trajectories
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Particle Trajectories
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Particle Trajectories

Courtesy Jens Krluger
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Integral Curves

Streamlines Pathlines SELURES

Particle trajectory Particle trajectory Trace of particles
at fixed time step in unsteady flow released into flow
at fixed position




Streamline

e Curve parallel to the vector field in each point for a fixed time

Pathline

e Describes motion of a massless particle over time

Streakline

e Location of all particles released at a fixed position over time

Timeline

e Location of all particles released along a line at a fixed time

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector
fields (unsteady flow)

Markus Hadwiger, KAUST Tino Weinkauf 14
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Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

» Tangent curves to a (n + 1)-dimensional vector field

Stream Lines Path Lines

Markus Hadwiger, KAUST 15



Vector fields

A static vector field v(x) Is a vector-valued function of space.
A time-dependent vector field v(x,t) depends also on time.

In the case of velocity fields, the terms steady and unsteady flow
are used.

The dimensions of x and v are equal, often 2 or 3, and we denote
components by x,y,z and u,v,w:

x=(x,y,z), v=(u,v,w)

Sometimes a vector field is defined on a surface x(i,j) . The
vector field is then a function of parameters and time:

v(i,j,t)

Ronald Peikert SciVis 2009 - Vector Fields 5-2



Vector fields as ODEs

For simplicity, the vector field is now interpreted as a velocity field.

Then the field v(x,t) describes the connection between location and
velocity of a (massless) particle.

It can equivalently be expressed as an ordinary differential equation
X(t) = v(x(t),t)
This ODE, together with an initial condition
X(t,) =X, -
IS a so-called initial value problem (IVP).
Its solution is the integral curve (or trajectory)

t

x(t) =X, +jv(x(r),r)dr

fo

Ronald Peikert SciVis 2009 - Vector Fields 5-6



Vector fields as ODEs

The integral curve is a pathline, describing the path of a massless
particle which was released at time £, at position x,,.

Remark: t <{,is allowed.
For static fields, the ODE is autonomous:

K(t)=v(x(t)

and its integral curves

t
x(t)=x,+ jv(x(r))dr
fo
are called field lines, or (in the case of velocity fields)

streamlines.

Ronald Peikert SciVis 2009 - Vector Fields

5-7



Vector fields as ODEs
In static vector fields, pathlines and streamlines are identical.

In time-dependent vector fields, instantaneous streamlines can be
computed from a "snapshot” at a fixed time T (which is a static
vector field)

v, (x)=v(x,T)

In practice, time-dependent fields are often given as a dataset per
time step. Each dataset is then a snapshot.

Ronald Peikert SciVis 2009 - Vector Fields 5-8



Streamline integration

Outline of algorithm for numerical streamline integration
(with obvious extension to pathlines):

Inputs:

- static vector field v(x)

- seed points with time of release (X,, t;)

« control parameters:
— step size (temporal, spatial, or in local coordinates)
— step count limit, time limit, etc.
— order of integration scheme

Output:

« streamlines as "polylines"”, with possible attributes
(interpolated field values, time, speed, arc length, etc.)

Ronald Peikert SciVis 2009 - Vector Fields

5-21



Streamline integration

Preprocessing:
» set up search structure for point location
« for each seed point:

— global point location: Given a point x,
find the cell containing x and the local coordinates (&,7,¢)
or ir the grid is structured:
find the computational space coordinates (i + ¢, j+n, k+¢)

— If x is not found in a cell, remove seed point

Ronald Peikert SciVis 2009 - Vector Fields 5-22



Streamline integration

Integration loop, for each seed point x:
- interpolate v trilinearly to local coordinates (£,77,<)
« do an integration step, producing a new point x'

« incremental point location: For position x' find cell and local
coordinates (&',7',¢") making use of information
(coordinates, local coordinates, cell) of old point x

Termination criteria:

« grid boundary reached

» step count limit reached

« optional: velocity close to zero

« optional: time limit reached

« optional. arc length limit reached

Ronald Peikert SciVis 2009 - Vector Fields 5-23



Streamline integration

Integration step: widely used integration methods:
« Euler (used only in special speed-optimized technigues, e.g.
GPU-based texture advection)

X 0w = X+V (X, t)at

h

« Runge-Kutta, 2™ or 4t order

Higher order than 4th?
« often too slow for visualization

« study (Yeung/Pope 1987) shows that, when using standard
trilinear interpolation, interpolation errors dominate integration
errors.

Ronald Peikert SciVis 2009 - Vector Fields 5-24



Flow Visualization: Geometry-Based Methods

e Numerical integration of stream lines:

e approximate streamline by polygon x;

e Testing example:
o V(xy)=(-y, xI2)"T
e exact solution: ellipses
e starting integration from (0,-1)

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Streamlines — Practice

® Basic approach:
@ theory: s(f) = sg + [o. . V(S(U)) du
@ practice: numerical integration

@ Idea:
(very) locally, the solution is (approx.) linear

@ Euler integration:
follow the current flow vector v(s;) from the current
streamline point s; for a very small time (df) and
therefore distance

® Euler integration: s, , =s, + dt- v(s)),
iIntegration of small steps (dt very small)

Helwig Hauser 6



Euler Integration — Example

® 2D model data: v, = dx/df = -y
v, = dy/dt = x/2

@ Sample arrows:

@ True ! .p/. 0 +

. s >
solution: T 2/"'3 4
ellipses! v |

Helwig Hauser 7



Euler Integration — Example

@ Seed points, = (0|-1)T;
current flow vector v(s,) = (1|0)T;
dit=1/2

Helwig Hauser 8
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Euler Integration — Example

® New points, = s, + v(s,)-dt = (1/2]-1)T;
current flow vector v(s,) = (1|1/4)T;

Helwig Hauser 9



Euler Integration — Example

® New points, =s, + v(s,)-dt=(1|-7/8)T;
current flow vector v(s,) = (7/8]1/2)T;

Helwig Hauser 10



Euler Integration — Example

®s, = (23/16-5/8)T
v(s.) =(5/8]23/32)T

(1.44-0.63)T;
(0.63(0.72)T;

& &

Helwig Hauser 1"



Euler Integration — Example

=(7/4]-17/64)" =~ (1.75]|-0.27)T;
= (17/64|7/8)" ~(0.27]0.88)T;

& &

Helwig Hauser 12



Euler Integration — Example

(0.20[1.69)T;
(

| S,
-1.69]0.10)T:

v(Sg)

@ &

Helwig Hauser 13



Euler Integration — Example

’s., ~(-3.22|-0.10)T;
v(s,,) ~(0.10]-1.61)T

Helwig Hauser 14



Euler Integration — Example

@S~ (0.75]-3.02); v(s,o) ~ (3.02]|0.37)7;
clearly: large integration error, df too large!
19 steps

Helwig Hauser 15



Euler Integration — Example

@ df smaller (1/4): more steps, more exact!
S~ (0.04|-1.74)7; v(s,5)~(1.74|0.02)T;

@ 36 steps

Helwig Hauser 16



Comparison Euler, Step Sizes @

Euler

Is getting
better
propor-
tionally
to dt

Helwig Hauser
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—a— Euler di=1/10

—#—FEuler dit=1/4

-1 —g—Euler di=1,2

Euler dt=1/100




Better than Euler Integr.: RK

® Runge-Kutta Approach:
@ theory:  s(f) =sy+ oy V(S(U))du
8 Euler: S, =85+ X5 V(S dt
® Runge-Kutta integration:

@ idea: cut short the curve arc

® RK-2 (second order RK):
1.. do half a Euler step
2.. evaluate flow vector there
3.: use it in the origin

® RK-2 (two evaluations of v per step):
S,-+1 — S,- 25 V(S,"‘V(S,)dt/Z) ) dt

Helwig Hauser 19



RK-2 Integration — One Step

® Seed points, = (0-2);
current flow vector v(s,) = (2|0)T;
preview vector v(s,+v(s,)-dt/2)=(2]|0.5)T,
df = 1

Helwig Hauser 20



RK-2 — One more step

® Seed points, = (2[-1.5)T;
current flow vector v(s,) = (1.5]|1)T;
preview vector v(s,+v(s,)-dt/2) ~(1|1.4)T;

dt =1 ‘_
4 d \ :

Helwig Hauser 21



RK-2 — A Quick Round

® RK-2: even with df=1 (9 steps)
better
than Euler
with dt=1/8
(72 steps)

- —¢— Euler, dt=1/8 5

Helwig Hauser 22



RK-4 vs. Euler, RK-2

® Even better: fourth order RK:
@ fourvectorsa, b, c, d

@ one step is a convex combination:
S, =S, +(@+2:-b+2:c+d)/6

@ vectors:

®a=dtv(s) ... original vector
eb=dtv(s+a/2) ... RK-2 vector
ec =dtv(sitb/2) ... use RK-2 ...

®d=dlv(s+cC) ... and again!

Helwig Hauser 23



Euler vs. Runge-Kutta

@ RK-4: pays off only with complex flows

1
1 20
P rar s

@ Here
approx.

like
RK-2

—¢—Euler, dt=1/2, 19 Schr.
—&— Euler, dt=1/4, 38 Schritte
—a—RK2, dt=1/2, 18*2 Schritte .

Helwig Hauser 24

—i—Euler, dt=1/8, 72 Schritte

—e—RK4, dt=1/2, 184 Schritte




Integration, Conclusions

® Summary:

@ analytic determination of streamlines
usually not possible

®@ hence: numerical integration

@ several methods available
(Euler, Runge-Kutta, etc.)

@ Euler: simple, imprecise, esp. with small dt
8@ RK: more accurate in higher orders

@ furthermore: adaptive methods, implicit methods,
efc.

Helwig Hauser 25



Thank you.




