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Reading Assignment #11 (until Apr 12)

Read (required):

« Data Visualization book
— Chapter 6 (Vector Visualization)
— Beginning (before 6.1)
— Chapters 6.2, 6.3, 6.5

» More general vector field basics (the book is not very precise on the basics)
https://en.wikipedia.org/wiki/Vector field
Read (optional):

« Paper:
Bruno Jobard and Wilfrid Lefer
Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498



Feature-Based Visualization and Analysis

e Vortex/ Vortex core lines
e There is no exact definition of vortices

e capturing some swirling behavior

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion

SOOI



Vector Fields

Each vector is usually thought of as a velocity vector
« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)
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Vector Fields

Each vector is usually thought of as a velocity vector
« Example for actual velocity: fluid flow

 But also force fields, etc. (e.g., electrostatic field)

Each vector in a vector field
lives in the tangent space
of the manifold at that point:

Each vector is a tangent vector
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Vector Fields vs. Vectors in Components

Because Euclidean space is most common, often slightly sloppy notation

v: U CR? > R, v:UCR} SR’
u —u-
xX,y) — :
- [} (532 > |7
w
v: U C R?> - R?, v:UCR’ -5 R,
u(x,y) u(x,y,z)
(%,3) = (V(x,y)) ' (%,3,2) = | v(x,3:2)
w(x,y,z)
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Vector Fields vs. Vectors in Components

Need basis vector fields

e;,. UCM—-TM,

n .
ei(x)r. basis for T.M
x — €;(x) { i )}121 *
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Vector Fields vs. Vectors in Components

Need basis vector fields

e;,. UCM—-TM,

n .
ei(x)r. basis for T.M
x — €;(x) { i )}121 *

v.:UCM—=TM,

x> viep+viey +...+1V"e,.

v:UCM—TM,
x> vi(x) e (x) + v (x)ea(x) + ...+ (x) en(x).
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Vector Fields vs. Vectors in Components

Need basis vector fields

iy Coordinate basis:
¢: UCM—=TM, {e,-(x)}?_l basis for T,M 9
x — €;(x) B e = —
dx!

v.:UCM—=TM,

x> viep+viey +...+1V"e,.

v:UCM—TM,
x> vi(x) e (x) + v (x)ea(x) + ...+ (x) en(x).
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Examples of Coordinate Curves and Bases

Coordinate functions, coordinate curves, bases
» Coordinate functions are real-valued (“scalar”) functions on the domain
» On each coordinate curve, one coordinate changes, all others stay constant

 Basis: n linearly independent vectors at each point of domain

Cartesian coordinates polar coordinates
xl =X

2
X =Y ]

d

e = — =1i 1

L™ 9x
e o _
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

« From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM—=R, vf
x— f(x).

Markus Hadwiger, KAUST 12



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

« From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fIMSR, vfi=df()
x— f(x).
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

« From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM =R, vii=df(v) eif :=df(e)
x— f(x).
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

« From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM =R, vii=df(v) eif :=df(e)
x— f(x).
9 2\ of

ﬁf:df(ﬁ):ﬁ
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

« From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

fiM =R, vii=df(v) eif :=df(e)

o - I\ of 9 . (3 -
ol =4 (a):a— ﬁszdxj(ﬁ) :/55

Kronecker delta
(“identity matrix”)
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

« From this viewpoint, the vector is a derivative operator (actually, a derivation)

» Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

f:M—R, vi:=df(v) e f:=df(e;)

o - I\ of 9 . (3 -
ol =4 (a):a— ﬁx’zde(ﬁ) :/55

For vector field: obtain directional derivative at each point Kronecker delta
(“identity matrix”)
vi: M — R,

X = V(x)f =df(v(x)). (remember that this just

looks scary (maybe) ...
Markus Hadwiger, KAUST y ( y ) )



Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion

SOOI



Particle Trajectories

Courtesy Jens Krluger
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Particle Trajectories
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Particle Trajectories
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Particle Trajectories

Courtesy Jens Krluger
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Flow F

Potential flow around a circular cylinder

r_cylinder

a circula

flow_around

https://en.wikipedia.org/wiki/Potential

free) and can be modeled as the gradient

Inviscid, incompressible flow that is irrotational (curl-

of a scalar function called the (scalar) velocity potential
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Flow Field Example (2)

Depending on Reynolds number, turbulence will develop

Example: von Karman vortex street: vortex shedding

https://en.wikipedia.org/wiki/Karman vortex street

images from wikipedia



Steady vs. Unsteady Flow

« Steady flow: time-independent
- Flow itself is static over time:  V(X) v: R" - R”,

« Example: laminar flows X = v(x).
» Unsteady flow: time-dependent
- Flow itself changes over time:  v(x,?) v: R" xR — R",

« Example: turbulent flows X v(x,t).

(here just for Euclidean domain; analogous on general manifolds)

Markus Hadwiger, KAUST 25



Direct vs. Indirect Flow Visualization

* Direct flow visualization
* QOverview of current flow state

* Visualization of vectors: arrow plots (“hedgehog” plots)

* Indirect flow visualization
» Use intermediate representation: vector field integration over time
* Visualization of temporal evolution
* Integral curves: streamlines, pathlines, streaklines, timelines

* Integral surfaces: streamsurfaces, pathsurfaces, streaksurfaces

Markus Hadwiger, KAUST 26



Direct vs. Indirect Flow Visualization




Direct Flow Visualization



Flow Visualization with Arrows
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* Direct flow visualization

* Normalized arrows vs.
scaling with velocity

— 2D: quite usable
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* But often used as basic
technique!
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Flow Visualization with Arrows

 Hedgehog plots

* Direct flow visualization

* Normalized arrows vs.
scaling with velocity

— 2D: quite usable
— 3D: often problematic
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* Limited expressivity
(temporal component missing)

* But often used as basic
technique!




Vector fields

An elementary visualization is to draw arrows
- at the data points (grid nodes or cell centers), or
« at a new (uniform) grid, for 3D fields often a 2D slice

Arrows can visualize:

 direction

« relative magnitude (when approproiately scaled)
» time dependency (when animated)

Ronald Peikert SciVis 2009 - Vector Fields
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Vector fields

Problems of visualization with arrows:

* |tis not clear whether arrows represent vector values at the start
point or at the midpoint of the arrow

« Often no satisfactory scaling factor exists:
— large scaling: Arrows occlude each other
— small scaling: Direction is not recognizable in some regions
— fixed length: Magnitude information is lost
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Fonald Peikert Scivis 2009 - Vector Fields
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Arrows Iin 3D

 Problems:
* Ambiguity
» Perspective

* 1D objects in 3D:
difficult spatial perception

* Visual clutter

 Improvement:

« 3D arrows (help to a certain extent)
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Arrows in 3D
Compromise




Indirect Flow Visualization



Integral Curves / Stream Objects
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Integral Curves

Streamlines Pathlines SELURES

Particle trajectory Particle trajectory Trace of particles
at fixed time step in unsteady flow released into flow
at fixed position




Streamline

e Curve parallel to the vector field in each point for a fixed time

Pathline

e Describes motion of a massless particle over time

Streakline

e Location of all particles released at a fixed position over time

Timeline

e Location of all particles released along a line at a fixed time

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



2D time-dependent vector field
particle visualization

Scientific Visualization, Tino Weinkauf & Jens Krliger, Saarland University, Winter 2011/12



4 / —e
stream lines path lines
curve parallel to the vector field in curve parallel to the vector field in
each point for a fixed time each point over time
describes motion of a massless describes motion of a massless
particle in an steady flow field particle in an unsteady flow field

Scientific Visualization, Tino Weinkauf & Jens Kriiger, Saarland University, Winter 2011/12



Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector
fields (unsteady flow)

Markus Hadwiger, KAUST Tino Weinkauf 41



(/@‘%“‘

Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

» Tangent curves to a (n + 1)-dimensional vector field

Stream Lines Path Lines

Markus Hadwiger, KAUST 42



Thank you.




