
CS 247 – Scientific Visualization
Lecture 20: Vector / Flow Visualization, Pt. 2
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Reading Assignment #11 (until Apr 12)

Read (required):

• Data Visualization book

– Chapter 6 (Vector Visualization)

– Beginning (before 6.1)

– Chapters 6.2, 6.3, 6.5

• More general vector field basics (the book is not very precise on the basics)

https://en.wikipedia.org/wiki/Vector_field

Read (optional):

• Paper:
Bruno Jobard and Wilfrid Lefer
Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498



Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

Feature-Based Visualization and Analysis

● Vortex/ Vortex core lines

● There is no exact definition of vortices

● capturing some swirling behavior



Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion



Vector Fields

Each vector is usually thought of as a velocity vector

• Example for actual velocity: fluid flow

• But also force fields, etc. (e.g., electrostatic field)



Vector Fields

Each vector is usually thought of as a velocity vector

• Example for actual velocity: fluid flow

• But also force fields, etc. (e.g., electrostatic field)

Each vector in a vector field
lives in the tangent space
of the manifold at that point:

Each vector is a tangent vector

image from wikipedia



Vector Fields vs. Vectors in Components

Because Euclidean space is most common, often slightly sloppy notation
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Need basis vector fields

Vector Fields vs. Vectors in Components
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Vector Fields vs. Vectors in Components
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Need basis vector fields

Vector Fields vs. Vectors in Components

Coordinate basis:
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Examples of Coordinate Curves and Bases

Coordinate functions, coordinate curves, bases

• Coordinate functions are real-valued (“scalar”) functions on the domain

• On each coordinate curve, one coordinate changes, all others stay constant

• Basis: n linearly independent vectors at each point of domain
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Cartesian coordinates polar coordinates
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Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

• From this viewpoint, the vector is a derivative operator (actually, a derivation)

• Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)
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Kronecker delta 
(“identity matrix”)



Vectors as Derivative Operators

A vector applied to a (real) function on the manifold gives the
directional derivative in that direction

• From this viewpoint, the vector is a derivative operator (actually, a derivation)

• Can be used as definition of a vector (must fulfill props. of a derivation; esp. Leibniz rule)

For vector field: obtain directional derivative at each point

Markus Hadwiger, KAUST

(remember that this just 
looks scary (maybe) ...)

Kronecker delta 
(“identity matrix”)



Integral Curves / Stream Objects

Integrating velocity over time yields spatial motion



Particle Trajectories
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Courtesy Jens Krüger



Particle Trajectories
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Particle Trajectories
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Particle Trajectories
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Courtesy Jens Krüger



Flow Field Example (1)

Potential flow around a circular cylinder
https://en.wikipedia.org/wiki/Potential_flow_around_a_circular_cylinder

Inviscid, incompressible flow that is irrotational (curl-free) and can be modeled as the gradient 
of a scalar function called the (scalar) velocity potential

images from wikipedia



Flow Field Example (2)

Depending on Reynolds number, turbulence will develop

Example: von Kármán vortex street: vortex shedding
https://en.wikipedia.org/wiki/Karman_vortex_street

images from wikipedia
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Steady vs. Unsteady Flow

• Steady flow: time-independent

• Flow itself is static over time:

• Example: laminar flows

• Unsteady flow: time-dependent

• Flow itself changes over time: 

• Example: turbulent flows

(here just for Euclidean domain; analogous on general manifolds)

Markus Hadwiger, KAUST
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Direct vs. Indirect Flow Visualization

• Direct flow visualization

• Overview of current flow state 

• Visualization of vectors: arrow plots (“hedgehog” plots)

• Indirect flow visualization

• Use intermediate representation: vector field integration over time

• Visualization of temporal evolution

• Integral curves: streamlines, pathlines, streaklines, timelines

• Integral surfaces: streamsurfaces, pathsurfaces, streaksurfaces
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Direct vs. Indirect Flow Visualization



Direct Flow Visualization
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Flow Visualization with Arrows

• Hedgehog plots

• Direct flow visualization

• Normalized arrows vs. 
scaling with velocity

– 2D: quite usable

– 3D: often problematic

• Limited expressivity
(temporal component missing)

• But often used as basic
technique!
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Flow Visualization with Arrows

• Hedgehog plots

• Direct flow visualization

• Normalized arrows vs. 
scaling with velocity

– 2D: quite usable

– 3D: often problematic

• Limited expressivity
(temporal component missing)

• But often used as basic
technique!
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Arrows in 3D

• Problems:

• Ambiguity

• Perspective                                                Shortening

• 1D objects in 3D:
difficult spatial perception

• Visual clutter

• Improvement:

• 3D arrows (help to a certain extent)
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Arrows in 3D

• Compromise:
Arrows only in slices



Indirect Flow Visualization



Integral Curves / Stream Objects
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Integral Curves
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Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

Streamline

● Curve parallel to the vector field in each point for a fixed time

Pathline

● Describes motion of a massless particle over time

Streakline

● Location of all particles released at a fixed position over time

Timeline

● Location of all particles released along a line at a fixed time



Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

2D time-dependent vector field
particle visualization



Scientific Visualization, Tino Weinkauf & Jens Krüger, Saarland University, Winter 2011/12

stream lines path lines

curve parallel to the vector field in 
each point for a fixed time

describes motion of a massless 
particle in an steady flow field

curve parallel to the vector field in 
each point over time

describes motion of a massless 
particle in an unsteady flow field



Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector 
fields (unsteady flow)
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Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

• Tangent curves to a (n + 1)-dimensional vector field

Stream Lines                                  Path Lines
Markus Hadwiger, KAUST 42



Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


