
CS 247 – Scientific Visualization
Lecture 13: Scalar Fields, Pt. 9

Volume Rendering, Pt. 1
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Reading Assignment #7 (until Mar 17)

Read (required):

• Real-Time Volume Graphics, Chapter 1
(Theoretical Background and Basic Approaches),
from beginning to 1.4.4 (inclusive)

• Paper:
Nelson Max, Optical Models for Direct Volume Rendering,
IEEE Transactions on Visualization and Computer Graphics, 1995
http://dx.doi.org/10.1109/2945.468400



wrapping up the previous part…
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Gauss map

Interlude: Curvature and Shape Operator

Differential of Gauss map

Shape operator (Weingarten map)
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Principal curvature magnitudes and 
directions are eigenvalues and 
eigenvectors of shape operator S



Gauss map

Interlude: Curvature and Shape Operator

Differential of Gauss map

Shape operator (Weingarten map)

Markus Hadwiger, KAUST

Principal curvature magnitudes and 
directions are eigenvalues and 
eigenvectors of shape operator S



Gauss map

Interlude: Curvature and Shape Operator

Differential of Gauss map

Shape operator (Weingarten map)
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(sign is convention)

Principal curvature magnitudes and 
directions are eigenvalues and 
eigenvectors of shape operator S



General Case (2D Scalar Fields)

In 2D scalar fields, only three types of (isolated, non-degenerate) critical points

Index of critical point: dimension of eigenspace with negative-definite Hessian
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maximum
(index 2)

minimum
(index 0)

saddle point
(index 1)
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Interesting Degenerate Critical Points?

Hessian matrix is singular (determinant = 0)

• Cannot say what happens: need higher-order derivatives, …

Interesting example: monkey saddle                            (‘third-order saddle’)

• Point (0,0) in center: Hessian = 0; Gaussian curvature = 0 (umbilical point)
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Discrete Classification of Critical Points

Combinatorial classification (looking at and comparing neighbors) 
instead of looking at derivatives
(i.e., derivatives of the smooth function that is not known)
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…toward scalar field topology, discrete Morse theory, Morse-Smale complex, …

maximumminimum saddle point



Example: Scalar Field Simplification

Topology-based smoothing of 2D scalar fields, Weinkauf et al., 2010
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Example: Differential Topology

Morse theory

• Morse function: scalar function where all critical points are
non-degenerate and have different critical value

Topological invariant: Euler characteristic          of manifold
(for 2-manifold mesh:                               )
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genus g=0
Euler characteristic 2

genus g=1
Euler characteristic 0

genus g=2
Euler characteristic -2

(orientable)



Example: Differential Topology

Morse theory

• Morse function: scalar function where all critical points are
non-degenerate and have different critical value

Topological invariant: Euler characteristic          of manifold
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genus    .

Euler characteristic 0 (=1-2+1)

: number of critical 
points with index  

: dimensionality of M

scalar function on torus is 
height function                   :

1 min, 1 max, 2 saddles

critical points are where

(tangent plane horizontal)



Volume Visualization
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Volume Visualization
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•2D visualization
slice images
(or multi-planar 
reformatting MPR)

• Indirect
3D visualization
isosurfaces
(or surface-shaded
display: SSD)

• Direct
3D visualization
(direct volume 
rendering: DVR)



Direct Volume Rendering
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Transparent Volumes vs. Isosurfaces

The transfer function assigns optical properties to data

• Translucent volumes

• But also: isosurface rendering using step function as transfer function



Direct Volume Rendering
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Image Plane

Image order approach:

For each pixel {
calculate color of the pixel

}

Data Set

Eye
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Volume Rendering Integral

Volume rendering integral
for Emission Absorption model

Numerical solutions:

true emission true absorption

Back-to-front compositing Front-to-back compositing



Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Initial intensity
at s0



Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Initial intensity
at s0

Without absorption all 
the initial radiant energy 
would reach the point s.



Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray
Absorption along the 

ray segment s0 - s 



Optical depth τ
Absorption к

Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray



Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Active emission 
at point s~

One point     along the 
viewing ray emits additional
radiant energy. 



Volume Rendering Integral

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

viewing ray

Every point     along the
viewing ray emits additional
radiant energy 



Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


