
CS 247 – Scientific Visualization
Lecture 12: Scalar Fields, Pt. 8
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Reading Assignment #6 (until Mar 8)

Read (required):

• Real-Time Volume Graphics, Chapter 2
(GPU Programming)

• Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume Illumination)

• Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors



Metric Tensor (Field)

Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)
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Symmetric, covariant second-order tensor field:
defines inner product on manifold (in each tangent space)
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(2D)

Cartesian
coordinates:



Metric Tensor (Field)

Components of metric referred to coordinates

A second-order tensor field is bi-linear, i.e.,
linear in each (vector/covector) argument separately

From bi-linearity we immediately get:
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Gradient Vector from Differential 1-Form

The metric (and inverse metric) lower or raise indices
(i.e., convert between covariant and contravariant tensors)

Inverse metric (contravariant)
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Kronecker delta behaves 
like identity matrix



Gradient Vector from Differential 1-Form

So the gradient vector is Vector-valued 1-form

Directional derivative via inner product:
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Example: Polar Coordinates

Metric tensor and inverse metric for polar coordinates

Gradient vector from 1-form: raise index with inverse metric
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Example: Polar Coordinates

Metric tensor and inverse metric for polar coordinates

Gradient vector from 1-form: raise index with inverse metric
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don’t forget that all of this is position-dependent!



Multi-Linear Interpolation

Markus Hadwiger, KAUST 12



Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right

Bi-Linear Interpolation
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Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation
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Interpolate function at (fractional) position            :

Bi-Linear Interpolation

Markus Hadwiger, KAUST 16



Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Bi-Linear Interpolation: Contours

Find one specific iso-contour (can of course do this for any/all isovalues):

Find all             where:
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Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?
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Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?

if denominator is zero, bi-linear interpolation has degenerated
to linear interpolation (or const)! (also means: no isolated critical points!)
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Bi-Linear Interpolation: Critical Points

Compute gradient

Note that isolines are
farther apart where
gradient is smaller

Note the horizontal and
vertical lines where
gradient becomes
vertical/horizontal

Note the critical point
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Bi-Linear Interpolation: Critical Points

Compute gradient (critical points are where gradient is zero vector):

Where are lines of constant value / critical points?
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critical point
(saddle point)



Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)

(here also: principal curvature magnitudes and directions
of this function’s graph == surface embedded in 3D)
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Bi-Linear Interpolation: Critical Points

Examine Hessian matrix at critical point (non-degenerate critical p.?, ...)

Eigenvalues and eigenvectors (Hessian is symmetric: always real)
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degenerate means determinant = 0 (at least one eigenvalue = 0);
bi-linear is simple: a = 0 means degenerated to
linear anyway: no critical point at all! (except constant function)
(but with more than one cell: can have max or min at vertices)



Gauss map

Interlude: Curvature and Shape Operator

Differential of Gauss map

Shape operator (Weingarten map)
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Principal curvature magnitudes and 
directions are eigenvalues and 
eigenvectors of shape operator S
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Gauss map

Interlude: Curvature and Shape Operator

Differential of Gauss map

Shape operator (Weingarten map)
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(sign is convention)

Principal curvature magnitudes and 
directions are eigenvalues and 
eigenvectors of shape operator S



Bi-Linear Interpolation: Comparisons

nearest-neighbor
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linear

(2 triangles per quad;
diagonal:
bottom-left,
top-right)

Bi-Linear Interpolation: Comparisons
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Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad;
diagonal:
top-left,
bottom-right)
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Bi-Linear Interpolation: Comparisons

bi-linear
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Bi-Linear Interpolation: Comparisons

bi-cubic

(Catmull-Rom spline)
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Piecewise Bi-Linear (Example: 3x2 Cells)
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Piecewise Bi-Linear (Example: 3x2 Cells)
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Piecewise Bi-Linear (Example: 3x2 Cells)
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linear (diagonal 1)

Bi-Linear Interpolation: Comparisons
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linear (diagonal 2)

Bi-Linear Interpolation: Comparisons
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Bi-Linear Interpolation: Comparisons

bi-linear (in 3D: tri-linear)
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bi-cubic (in 3D: tri-cubic)

Bi-Linear Interpolation: Comparisons
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linear (diagonal 1)

Bi-Linear Interpolation: Comparisons
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linear (diagonal 2)

Bi-Linear Interpolation: Comparisons
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Bi-Linear Interpolation: Comparisons

bi-linear (in 3D: tri-linear)
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bi-cubic (in 3D: tri-cubic)

Bi-Linear Interpolation: Comparisons
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Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


