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Reading Assignment #6 (until Mar 8)

Read (required):

• Real-Time Volume Graphics, Chapter 2
(GPU Programming)

• Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume Illumination)

• Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors



Gradient and Directional Derivative

Gradient        s        of scalar function                :           (in Cartesian coordinates)

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:
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What about the Basis?

On the previous slide, this actually meant

It’s just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms                          takes a (direction) vector as input, 
gives scalar as output

In the expression of the gradient        above, all 1-forms on the right-hand 
side get the same vector as input

is simply a linear combination of the coordinate differentials
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept

The directional derivative and the gradient vector

The gradient vector is then defined, such that:
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Gradient Vectors and Differential 1-Forms
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from Wikipedia (for u a unit vector),

the function here is
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Gradient Vectors and Differential 1-Forms
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how about in polar coordinates?

from Wikipedia (for u a unit vector),
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Gradient Vectors and Differential 1-Forms

11

how about in polar coordinates?
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Gradient Vectors and Differential 1-Forms
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from Wikipedia (for u a unit vector),

the function here is

1-form (field)

different 1-forms
evaluated in some direction



In tensor calculus, first-order tensors can be

• Contravariant

• Covariant

The gradient vector is a contravariant vector

The gradient 1-form is a covariant vector (a covector)

Very powerful; necessary for non-Cartesian coordinate systems

On (intrinsically) curved manifolds (sphere, ...):
Cartesian coordinates not even possible

Interlude: Tensor Calculus
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Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

• Contravariant

• Covariant

The gradient vector is a contravariant vector

The gradient 1-form is a covariant vector (a covector)

This is also the fundamental reason why in graphics a normal vector 
transforms differently: as a covector, not as a vector!

(typical graphics rule: n transforms with transpose of inverse matrix)
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Metric Tensor (Field)

Symmetric second-order tensor field: Defines inner product
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Metric Tensor (Field)

Symmetric second-order tensor field: Defines inner product
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Metric Tensor (Field)

Symmetric second-order tensor field: Defines inner product
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Cartesian coordinates:



Metric Tensor (Field)

Components referred to coordinates

A second-order tensor field is bi-linear, i.e.,
linear in each (vector) argument separately

Therefore, we immediately get:
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Tensor Calculus

Highly recommended:

Very nice book,

complete lecture on Youtube!
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(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences

• Cheap and quality often sufficient (2*3 neighbors in 3D)

Discrete convolution filters on grid

• Image processing filters; e.g. Sobel (33 neighbors in 3D)

Continuous convolution filters

• Derived continuous reconstruction filters

• E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

Forward differences / backward differences
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Finite Differences

Central differences
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Central Differences

Need only two neighboring voxels per derivative

Most common method

gx = 0.5( f(x+1, y, z) – f(x-1, y, z) )

gy = 0.5( f(x, y+1, z) – f(x, y-1, z) )

gz = 0.5( f(x, y, z+1) – f(x, y, z-1) )

f(x-1, y, z) f(x+1, y, z)

f(x, y+1, z)

f(x, y-1, z)

f(x, y, z+1)

f(x, y, z-1)

on a curve 

in a volume



Multi-Linear Interpolation
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Eduard Gröller, Stefan Jeschke 25

Bi-linear Filtering Example (Magnification)

Original image

Nearest neighbor Bi-linear filtering



Bi-Linear Interpolation vs. Nearest Neighbor

nearest-neighbor                                bi-linear
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Bi-Linear Interpolation vs. Nearest Neighbor

nearest-neighbor                                bi-linear
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Bilinear patch (courtesy J. Han)



Bi-Linear Interpolation vs. Nearest Neighbor

nearest-neighbor                                bi-linear
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Bilinear patch (courtesy J. Han)

for surfaces,
height interpolation:



Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #1: 1 at bottom-left and top-right, 0 at top-left and bottom-right

Bi-Linear Interpolation
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Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right

Bi-Linear Interpolation
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Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation
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Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation
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Weights in 2x2 format:

Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Bi-Linear Interpolation: Contours

Find one specific iso-contour (can of course do this for any/all isovalues):

Find all             where:
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Thank you.

Thanks for material

• Helwig Hauser

• Eduard Gröller

• Daniel Weiskopf

• Torsten Möller

• Ronny Peikert

• Philipp Muigg

• Christof Rezk-Salama


