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Reading Assignment #6 (until Mar 8)

Read (required):

» Real-Time Volume Graphics, Chapter 2
(GPU Programming)

» Real-Time Volume Graphics, Chapters 5.5 and 5.6 (you already had to read - 5.4)
(Local Volume Illlumination)

» Refresh your memory on eigenvectors and eigenvalues:
https://en.wikipedia.org/wiki/Eigenvalues and eigenvectors



Gradient and Directional Derivative

Gradient Vf()c,y7 Z) of scalar function f()(f7 Y, Z) : (in Cartesian coordinates)

J . , d
v f(xmz):( f(;;cy,zx f(;;y,Z)7 f(;,zyyz))

(Cartesian vector components; basis vectors not shown)

But: always need basis vectors! With Cartesian basis:

k

Vi(x,y,2) = Jf (;;Cy, )., 9f (;c;y, 2) 15 J f(;,zy, 7)
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What about the Basis?

On the previous slide, this actually meant

d d d
viteya) = L i+ LD gz + L2 k)

It's just that the Cartesian basis vectors are the same everywhere...

But this is not true for many other coordinate systems:

Cartesian - polar
coordinates ! coordinates W
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept

0
df = ai dx + 8;: dy + aJZC

A differential 1-form is a scalar-valued linear function that takes a
(direction) vector as input, and gives a scalar as output

Each of the 1-forms d f,dx,dy,dz takes a (direction) vector as input,
gives scalar as output

In the expression of the gradient d f above, all 1-forms on the right-hand
side get the same vector as input

d f is simply a linear combination of the coordinate differentials dx, dy, dz
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The Gradient as a Differential Form

The gradient as a differential (differential 1-form) is the “primary” concept

0
df = aj: dx + ai: dy + a];

The directional derivative and the gradient vector

Dyf =df(u)
df(u)=Vf-u

The gradient vector is then defined, such that:
Vf-u:=df(u)
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Gradient Vectors and Differential 1-Forms
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from Wikipedia (for u a unit vector),
the function hereis  f(x,y) = x> +y?

Vf(xy) =2xi+2yj



Gradient Vectors and Differential 1-Forms
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Gradient Vectors and Differential 1-Forms
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Gradient Vectors and Differential 1-Forms

different 1-forms
evaluated in some direction

20f

10

0 —\ L L L 1
20 -15 -10 -5 0

from Wikipedia (for u a unit vector),

the function hereis  f(r,0) =r
Vf(r,0)=2re.+ Oﬁ eg = 2re,

df(r,0) =2rdr+0d6 = 2rdr 12
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Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

 Contravariant v=1le
 Covariant 0 =0
. . . i
The gradient vector is a contravariant vector v=1'0,
df

The gradient 1-form is a covariant vector (a covector) df = 3 dx’
X

Very powerful; necessary for non-Cartesian coordinate systems

On (intrinsically) curved manifolds (sphere, ...):
Cartesian coordinates not even possible

Markus Hadwiger, KAUST 13



Interlude: Tensor Calculus

In tensor calculus, first-order tensors can be

 Contravariant v=1le
 Covariant 0 =0

. . . __
The gradient vector is a contravariant vector v=1'0,

df

The gradient 1-form is a covariant vector (a covector) df = 3 dx'
X

This is also the fundamental reason why in graphics a normal vector
transforms differently: as a covector, not as a vector!

(typical graphics rule: n transforms with transpose of inverse matrix)
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Metric Tensor (Field)

Symmetric second-order tensor field: Defines inner product

(v, W) :=g(v,w) = |[v][[[w]|cos 6

p
Iv]]

|
T
<

<
~—

Markus Hadwiger, KAUST



Metric Tensor (Field)

Symmetric second-order tensor field: Defines inner product

(v, W) :=g(v,w) = |[v][[[w]|cos 6

(2D)
2 _ _ |811 812
_g(v’-V)- > 1 or g gl [V
— o onibnd —
— S VP =" ] [821 822] [v2]
T
=V gV
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Metric Tensor (Field)

Symmetric second-order tensor field: Defines inner product

(v, w) :=g(v,w) = [|v]|[|w|[cos 8

(2D)
V]2 = (v,v) e[S 22|
Zg(V,V) 1
= gij'V/ VP=[ 4 E; g;] H
:VTgv
o1
Cartesian coordinates: 5= 1o 1
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Metric Tensor (Field)

Components referred to coordinates
gij = (€, e;)

A second-order tensor field is bi-linear, i.e.,
linear in each (vector) argument separately

Therefore, we immediately get:

g(v,v) =g(ves,v'e))
— ving(ei, Ej)

o
= gijv'v’/
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Tensor Calculus

Highly recommended:

Very nice book, Sy

Introduction to
Tensor Analysis
and the Calculus
of Moving
Surfaces

complete lecture on Youtube!

_@_ Springer
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(Numerical) Gradient Reconstruction

We need to reconstruct the derivatives of a
continuous function given as discrete samples

Central differences
» Cheap and quality often sufficient (2*3 neighbors in 3D)

22

Discrete convolution filters on grid

« Image processing filters; e.g. Sobel (32 neighbors in 3D) — oo

o o@ o0

Continuous convolution filters PSSP S §
* Derived continuous reconstruction filters &0 o

 E.g., the cubic B-spline and its derivatives (43 neighbors)



Finite Differences

Obtain first derivative from Taylor expansion

f' (o) f"(xo)
T

D BE ALY

f(il?()—l—h) = f(il?o) + h? +...

Forward differences / backward differences

f(CC() + h

S—’

— f(o) + o(h)

b
X
e
]

f(zo) — f(xo — h) + o(h)

Rl R I
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Finite Differences

Central differences

flo+h) = f(zo) + fl(l! )1 - fﬂé )h2
Fleo—h) = flao) — L0y 4 TH00) G2y
f,(x()) _ f(xD + h)th(xO o h) O(hQ)
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Central Differences

Need only two neighboring voxels per derivative

Most common method f(x, y+1, z)

on a curve f(x, y, z+1)

f(x-1, v, 7) f(x+1, y, 7)

f(x, y, z-1)
f(X9 Y'la Z)
gx = 0°5( f(x+1r Y/ Z) - f(x_lr Y, Z) )
= 0.5( £(x, y+1, - £(x, yv-1, .
gy ( £(x, ¥y z) (x, y z) ) in a volume

0-5( f(x, Y, Z+1) - £(x, Y/ z-1) )

Q
N
]



Multi-Linear Interpolation
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Bi-linear Filtering Example (Magnification)

- 14
i =

Nearest neighbor Bi-linear filtering

Eduard Groller, Stefan Jeschke 25
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Bi-Linear Interpolation vs. Nearest Neighbor
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Bi-Linear Interpolation vs. Nearest Neighbor
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for surfaces,
height interpolation:
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Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #1: 1 at bottom-left and top-right, O at top-left and bottom-right
—
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Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right
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Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

o1 :=x1 — Lxlj o) [0.0, 1.0)
O =Xy — |_)C2_| Ooh © [0.0, 1.0)

and 2x2 sample values
Vol Vi1
Voo V10

Compute: f(0,00)
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Bi-Linear Interpolation

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

o1 :=x1 — L)CLI o) [0.0, 1.0)
O =Xy — |_)C2_| Ooh © [0.0, 1.0)

and 2x2 sample values
Vol Vi1
Voo V10

Compute: f(0,00)
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Bi-Linear Interpolation

Weights in 2x2 format:
1 —
[(1 E‘zaz)] (1—a) o] = [(1£alf(‘11)?2a2) o glfzaz)]

Interpolate function at (fractional) position (o, o) :
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Bi-Linear Interpolation

Interpolate function at (fractional) position (o, a2) :

Voo V10 (04|

flog, ) = [062 (1 _052)] [VUI Vll]

(1—051)]

<l 0l ag e

(1—06%

= [apvor + (1 — 0)voo an11+(1—0‘2)"10][ o
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Bi-Linear Interpolation

Interpolate function at (fractional) position (o, a2) :

(1—051)]

(04|

flog, ) = [062 (1 _052)] [VUI Vll]

Yoo V10

=(1—o0q)(1—0)voo+ a1 (1 —a)vip+ (1 —ay)opver + 0 0pvy

= Voo + (VIO — VO()) + O (V()l — V()()) + aZ(VOO +V11 — V10— V()l)
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Bi-Linear Interpolation: Contours

Find one specific iso-contour (can of course do this for any/all isovalues):
flog, ) =c
Find all (a1, o ) where:

voo + 01 (Vo — voo) + 02 (vor —voo) + 0100 (voo + Vi1 —Vip—Vo1) = ¢
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Thank you.




