£

King Abdullah University of «)

Science and Technology ‘ I KA U ST

CS 247 - Scientific Visualization
Lecture 8: Scalar Fields, Pt. 4

Markuiiadwiger, KAUST

Reading Assignment #4 (until Feb 22)

Read (required):

» Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive
(Terminology, Types of Light Sources, Gradient-Based Illumination,
Local lllumination Models)

« Paper:
Marching Cubes: A high resolution 3D surface construction algorithm, Bill
Lorensen & Harvey Cline, ACM SIGGRAPH 1987
[> 16,000 citations and counting...]

http://dl.acm.org/citation.cfm?id=37422

Programming Assignment 2 + 3

From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

1. Locate the contour corresponding to a user-specified iso value
2. Create lines

3D - Marching Cubes Algorithm:

Locate the surface corresponding to a user-specified iso value

1.
2. Create triangles

3. Calculate normals to the surface at each vertex
4.

Draw shaded triangles

Markus Hadwiger, KAUST

Marching Cubes

 For each cell, we have 8 vertices with 2
possible states each (inside or outside).

« This gives us 28 possible patterns = 256
cases.

« Enumerate cases to create a LUT

« Use symmetries to reduce problem
from 256 to 15 cases.

Explanations
 Data Visualization book, 5.3.2

» Marching Cubes: A high resolution 3D
surface construction algorithm,
Lorensen & Cline, ACM SIGGRAPH 1987

Markus Hadwiger, KAUST 5

The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

« contours on planar slices, followed by

« "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
» Pieces of the isosurfaces are generated on a cell-by-cell basis.

* Similar to marching squares, a 8-bit number is computed from
the 8 signs of f(x;) on the corners of a hexahedral cell.

« The isosurface piece is looked up in a table with 256 entries.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-15

The marching cubes algorithm
How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
» rotational symmetries of the cube

« reflective symmetries of the cube

+ sign changes of f(x;)

They published a reduced set of 14") cases shown on the next
slides where

+ white circles indicate positive signs of f(x;)
 the positive side of the isosurface is drawn in red, the negative
side in blue.

*) plus an unnecessary "case 14" which is a symmetric image of case 11.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

Ronald Peikert

The marching cubes algorithm

case 1

O
case 5 case 6

SciVis 2009 - Contouring and Isosurfaces

217

The marching cubes algorithm

o;
case 10 case 11

o;
case 12 case 13

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-18

The marching cubes algorithm

Do the pieces fit together?

« The correct isosurfaces of the trilinear
interpolant would fit (trilinear reduces to
bilinear on the cell interfaces)

* but the marching cubes polygons don't
necessarily fit.

Example
« case 10, on top of
» case 3 (rotated, signs changed)

have matching signs at nodes but polygons
don't fit.

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

case 3

2-19

The marching cubes algorithm

L4 4

case 3¢ case 6¢ case /¢

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-21

The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:
« build a table of the 28 cases
« derive a table of the 256 cases, containing info on

— intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0,2), (0,4), (1,3), (1,5)

— triangles based on these points, e.g. for case 3/256.
(0,2,1), (1,3,2).

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces 2-23

The marching cubes algorithm

Loop over cells:
- find sign of f(x;) for the 8 corner nodes, giving 8-bit integer
* use as index into (256 case) table

» find intersection points on edges listed in table, using linear
interpolation

« generate triangles according to table

Post-processing steps:

» connect triangles (share vertices)

« compute normal vectors
— by averaging triangle normals (problem: thin triangles!)
— by estimating the gradient of the field f(x;)(better)

Ronald Peikert SciVis 2009 - Contouring and Isosurfaces

2-24

Triangle Mesh Data Structures

 Typical implementations of unstructured grids
— Direct form T

x0,y0, (z0)] t t f
face O sStrucC ace
x1,y1l, (z1) float verts[3][2] 2D

coords for
x2,y2,(z2) DataType val:
vertex 0 \xl,yl, (z1) P
x0,y0, (z0) face 1 struct face

x3,y3,(z3) _| float verts[3][3] 3D
DataType val;

— Additionally store the data values
— Problems: storage space, redundancy, updates in multiple places

© Weiskopf/Machiraju/Moller

Triangle Mesh Data Structures

 Typical implementations of unstructured grids
— Indirect form

vertex list face list et
v[0]: x0,y0,z0 £[0]: , \\ 7
/ v [1] : f}f \\ X

0,1,2
x1l,yl,zl £fr11: 1,0,3 /
CO;)trdSJOr v[2]: x2,y2,2z2 f[21: 2,1,4 —> "
veriex v[3]: x3,y3,z3

— More efficient than direct approach in terms of memory
requirements; geometry and topology separated

— But still have to do global search to find local information (i.e.
what faces share an edge)

— More neighborhood information: half-edge data structure, ...

Orientability (2-manifold embedded in 3D)

not orientable

Orientability of 2-manifold: .

Possible to assign consistent normal vector orientation

. Moebius strip
Triangle meshes (only one side!)

 Edges

» Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise)
(e.g., (0,1,2) on one side of edge, (1,0,3) on the other side)

* Triangles | f*f/
/
 Consistent front side vs. back side /N
I e

» Normal vector; or ordering of vertices (CCW/CW)

» See also: “right-hand rule”

Markus Hadwiger, KAUST 16

Local Shading Equations

Standard volume shading adapts surface shading
Most commonly Blinn/Phong model

But what about the "surface" normal vector?

n
A

diffuse reflection specular reflection

(standard inner product in Cartesian coordinates)

Many uses:

Project vector onto another vector,
project into basis,
project into tangent plane,

Markus Hadwiger, KAUST

Thank you.

